Reputation: 1229
I need a function to animate a sine wave infinitely over time. The sine wave moves to the left.
My sine wave is built using the following equation:
A * sin(B * x + C) + D
Now to animate the sine wave as if it is moving to the left, I simply increase C by 1 everytime I refresh the screen. Now this is all fine and dandy for a few minutes but I need to have that animation run for hours. I can't just have an integer build up 60 times a second forever. How does someone deal with this? Do I just try to find a point where the sine wave crosses 0 and then restart the animation from 0?
I just need to have the logic of something like this explained.
EDIT #1 I forgot to mention that there's a randomized component to my sine. The sine is not continuously the same. A and D are sinusoidal functions tied to that integer at the moment. The sine needs to look random with varying periods and amplitudes.
EDIT #2
Edited see Edit 3
EDIT #3
@Potatoswatter I tried implementing your technique but I don't think I'm getting it. Here's what I got:
static double i = 0;
i = i + (MPI / 2);
if ( i >= 800 * (MPI / 2) ) i -= 800 * (MPI / 2);
for (k = 0; k < 800; ++k)
{
double A1 = 145 * sin((rand1 * (k - 400) + i) / 300) + rand3; // Amplitude
double A2 = 100 * sin((rand2 * (k - 400) + i) / 300) + rand2; // Amplitude
double A3 = 168 * sin((rand3 * (k - 400) + i) / 300) + rand1; // Amplitude
double B1 = 3 + rand1 + (sin((rand3 * k) * i) / (500 * rand1)); // Period
double B2 = 3 + rand2 + (sin((rand2 * k) * i) / 500); // Period
double B3 = 3 + rand3 + (sin((rand1 * k) * i) / (500 * rand3)); // Period
double x = k; // Current x
double C1 = 10 * i; // X axis move
double C2 = 11 * i; // X axis move
double C3 = 12 * i; // X axis move
double D1 = rand1 + sin(rand1 * x / 600) * 4; // Y axis move
double D2 = rand2 + sin(rand2 * x / 500) * 4; // Y axis move
double D3 = rand3 + cos(rand3 * x / 400) * 4; // Y axis move
sine1[k] = (double)A1 * sin((B1 * x + C1) / 400) + D1;
sine2[k] = (double)A2 * sin((B2 * x + C2) / 300) + D2 + 100;
sine3[k] = (double)A3 * cos((B3 * x + C3) / 500) + D3 + 50;
}
How do I modify this to make it work?
Halp!
Upvotes: 1
Views: 1912
Reputation: 1229
I decided to change my course of action. I just drive i
with the system's monotonic clock like so:
struct timespec spec;
int ms;
time_t s;
static unsigned long long etime = 0;
clock_gettime(CLOCK_MONOTONIC, &spec);
s = spec.tv_sec;
ms = spec.tv_nsec / 10000000;
etime = concatenate((long)s, ms);
Then I simply changed i
to etime
in my sine equations. Here's the concatenating function I used for this purpose:
unsigned concatenate(unsigned x, unsigned y) {
x = x * 100;
return x + y;
}
Upvotes: 0
Reputation: 137830
sin
is periodic, with a period of 2π. Therefore, if the argument is greater than 2π, you can subtract 2 * M_PI
from it and get the same answer.
Instead of using a single variable k
to compute all waves of various speeds, use three variables double k1, k2, k3
, and keep them bound in the range from 0 to 2π.
if ( k2 >= 2 * M_PI ) k2 -= 2 * M_PI;
They may be individually updated by adding some value each frame. If the increment may be more than 2π then subtracting a single 2π won't bring them back into range, but you can use fmod()
instead.
Upvotes: 0
Reputation: 4206
Sine has a period of 2 pi, meaning that sin(x) = sin(x + 2 * M_PI)
, for any x
.
So, you could just increase C
by, say, pi/n
where n
is any integer, as you refresh the screen, and after 2n
refreshes, reset C
(to 0
, or whatever).
Edit for clarity: the integer n
is not meant to change over time.
Instead, pick some n
, for example, let's say n = 10
. Now, every frame, increase x
by pi / 10
. After 20
frames, you have increased x
by a total of 20 * pi / 10 = 2 * pi
. Since sin(x + 2 * pi) = sin(x)
, you may as well just reset your sin(...)
input to just x
, and start the process over.
Upvotes: 2