Reputation: 1559
I want to ask if it is possible to access single channel matrix using img.at<T>(y, x)
instead using img.ptr<T>(y, x)[0]
In the example below, I create a simple program to copy an image to another
cv::Mat inpImg = cv::imread("test.png");
cv::Mat img;
inpImg.convertTo(img, CV_8UC1); // single channel image
cv::Mat outImg(img.rows, img.cols, CV_8UC1);
for(int a = 0; a < img.cols; a++)
for(int b = 0; b < img.rows; b++)
outImg.at<uchar>(b, a) = img.at<uchar>(b, a); // This is wrong
cv::imshow("Test", outImg);
The shown result was wrong, but if I change it to
outImg.ptr<uchar>(b, a)[0] = img.ptr<uchar>(b, a)[0];
The result was correct.
I'm quite puzzled since using img.at<T>(y, x)
should also be okay. I also tried with 32FC1 and float, the result is similar.
Upvotes: 0
Views: 2841
Reputation: 26259
Although I know you already found it, the real reason - buried nicely in the documentation - is that cv::convertTo
ignores the number of channels implied by the output type, so when you do this:
inpImg.convertTo(img, CV_8UC1);
And, assuming your input image has three channels, you actually end up with a CV_8UC3
format, which explains why your initial workaround was successful - effectively, you only took a single channel by doing this:
outImg.ptr<uchar>(b, a)[0] // takes the first channel of a CV_8UC3
This only worked by accident as the pixel should have been accessed like this:
outImg.ptr<Vec3b>(b, a)[0] // takes the blue channel of a CV_8UC3
As the data is still packed uchar
in both cases, the effective reinterpretation happened to work.
As you noted, you can either convert to greyscale on loading:
cv::imread("test.png", CV_LOAD_IMAGE_GRAYSCALE)
Or, you can convert explicitly:
cv::cvtColor(inpImg, inpImg, CV_BGR2GRAY);
Upvotes: 3