Reputation: 11926
I know how to do element by element multiplication between two Pandas dataframes. However, things get more complicated when the dimensions of the two dataframes are not compatible. For instance below df * df2
is straightforward, but df * df3
is a problem:
df = pd.DataFrame({'col1' : [1.0] * 5,
'col2' : [2.0] * 5,
'col3' : [3.0] * 5 }, index = range(1,6),)
df2 = pd.DataFrame({'col1' : [10.0] * 5,
'col2' : [100.0] * 5,
'col3' : [1000.0] * 5 }, index = range(1,6),)
df3 = pd.DataFrame({'col1' : [0.1] * 5}, index = range(1,6),)
df.mul(df2, 1) # element by element multiplication no problems
df.mul(df3, 1) # df(row*col) is not equal to df3(row*col)
col1 col2 col3
1 0.1 NaN NaN
2 0.1 NaN NaN
3 0.1 NaN NaN
4 0.1 NaN NaN
5 0.1 NaN NaN
In the above situation, how can I multiply every column of df with df3.col1?
My attempt: I tried to replicate df3.col1
len(df.columns.values)
times to get a dataframe that is of the same dimension as df
:
df3 = pd.DataFrame([df3.col1 for n in range(len(df.columns.values)) ])
df3
1 2 3 4 5
col1 0.1 0.1 0.1 0.1 0.1
col1 0.1 0.1 0.1 0.1 0.1
col1 0.1 0.1 0.1 0.1 0.1
But this creates a dataframe of dimensions 3 * 5, whereas I am after 5*3. I know I can take the transpose with df3.T()
to get what I need but I think this is not that the fastest way.
Upvotes: 30
Views: 111868
Reputation: 3235
To utilize Pandas broadcasting properties, you can use multiply
.
df.multiply(df3['col1'], axis=0)
Upvotes: 5
Reputation: 2745
This works for me:
mul = df.mul(df3.c, axis=0)
Or, when you want to subtract (divide) instead:
sub = df.sub(df3.c, axis=0)
div = df.div(df3.c, axis=0)
Works also with a nan
in df (e.g. if you apply this to the df: df.iloc[0]['col2'] = np.nan)
Upvotes: 3
Reputation: 32038
A simpler way to do this is just to multiply the dataframe whose colnames you want to keep with the values (i.e. numpy array) of the other, like so:
In [63]: df * df2.values
Out[63]:
col1 col2 col3
1 10 200 3000
2 10 200 3000
3 10 200 3000
4 10 200 3000
5 10 200 3000
This way you do not have to write all that new dataframe boilerplate.
Upvotes: 22
Reputation: 12220
Another way is create list of columns and join them:
cols = [pd.DataFrame(df[col] * df3.col1, columns=[col]) for col in df]
mul = cols[0].join(cols[1:])
Upvotes: 1
Reputation: 880987
In [161]: pd.DataFrame(df.values*df2.values, columns=df.columns, index=df.index)
Out[161]:
col1 col2 col3
1 10 200 3000
2 10 200 3000
3 10 200 3000
4 10 200 3000
5 10 200 3000
Upvotes: 41