Reputation: 653
To read files from a directory, try the following:
import os
import pandas as pd
path=os.getcwd()
files=os.listdir(path)
files
['wind-diciembre.xls', 'stat_noviembre.xls', 'stat_marzo.xls', 'wind-noviembre.xls', 'wind-enero.xls', 'stat_octubre.xls', 'wind-septiembre.xls', 'stat_septiembre.xls', 'wind-febrero.xls', 'wind-marzo.xls', 'wind-julio.xls', 'wind-octubre.xls', 'stat_diciembre.xls', 'stat_julio.xls', 'wind-junio.xls', 'stat_abril.xls', 'stat_enero.xls', 'stat_junio.xls', 'stat_agosto.xls', 'stat_febrero.xls', 'wind-abril.xls', 'wind-agosto.xls']
where:
stat_enero
Fecha HR PreciAcu RadSolar T Presion Tmax HRmax \
01/01/2011 37 0 162 18.5 0 31.2 86
02/01/2011 70 0 58 12.0 0 14.6 95
03/01/2011 62 0 188 15.3 0 24.9 86
04/01/2011 69 0 181 17.0 0 29.2 97
.
.
.
Presionmax RadSolarmax Tmin HRmin Presionmin
0 0 774 12.3 9 0
1 0 314 9.2 52 0
2 0 713 8.3 32 0
3 0 730 7.7 26 0
.
.
.
and
wind-enero
Fecha MagV MagMax Rachas MagRes DirRes DirWind
01/08/2011 00:00 4.3 14.1 17.9 1.0 281.3 ONO
02/08/2011 00:00 4.2 15.7 20.6 1.5 28.3 NNE
03/08/2011 00:00 4.6 23.3 25.6 2.9 49.2 ENE
04/08/2011 00:00 4.8 17.9 23.0 2.0 30.5 NNE
.
.
.
The next step is to read, parse and add the files to a dataframe, Now I do the following:
for f in files:
data=pd.ExcelFile(f)
data1=data.sheet_names
print data1
[u'diciembre']
[u'Hoja1']
[u'Hoja1']
[u'noviembre']
[u'enero']
[u'Hoja1']
[u'septiembre']
[u'Hoja1']
[u'febrero']
[u'marzo']
[u'julio']
.
.
.
for sheet in data1:
data2=data.parse(sheet)
data2
Fecha MagV MagMax Rachas MagRes DirRes DirWind
01/08/2011 00:00 4.3 14.1 17.9 1.0 281.3 ONO
02/08/2011 00:00 4.2 15.7 20.6 1.5 28.3 NNE
03/08/2011 00:00 4.6 23.3 25.6 2.9 49.2 ENE
04/08/2011 00:00 4.8 17.9 23.0 2.0 30.5 NNE
05/08/2011 00:00 6.0 22.5 26.3 4.4 68.7 ENE
06/08/2011 00:00 4.9 23.8 23.0 3.3 57.3 ENE
07/08/2011 00:00 3.4 12.9 20.2 1.6 104.0 ESE
08/08/2011 00:00 4.0 20.5 22.4 2.6 79.1 ENE
09/08/2011 00:00 4.1 22.4 25.8 2.9 74.1 ENE
10/08/2011 00:00 4.6 18.4 24.0 2.3 52.1 ENE
11/08/2011 00:00 5.0 22.3 27.8 3.3 65.0 ENE
12/08/2011 00:00 5.4 24.9 25.6 4.1 78.7 ENE
13/08/2011 00:00 5.3 26.0 31.7 4.5 79.7 ENE
14/08/2011 00:00 5.9 31.7 29.2 4.5 59.5 ENE
15/08/2011 00:00 6.3 23.0 25.1 4.6 70.8 ENE
16/08/2011 00:00 6.3 19.5 30.8 4.8 64.0 ENE
17/08/2011 00:00 5.2 21.2 25.3 3.9 57.5 ENE
18/08/2011 00:00 5.0 22.3 23.7 2.6 59.4 ENE
19/08/2011 00:00 4.4 21.6 27.5 2.4 57.0 ENE
The above output shows only part of the file,how I can parse all files and add them to a dataframe
Upvotes: 9
Views: 15384
Reputation: 3253
Below solution is just a minor tweak on @DavidHagan's answer above.
This one includes a column to identify the read File No like F0, F1, etc. and sheet no of each file as S0, S1, etc. So that we can know where the rows came from.
import numpy as np
import pandas as pd, datetime as dt
import glob, os
import sys
runDir = r'c:\blah\blah'
if os.getcwd() != runDir:
os.chdir(runDir)
files = glob.glob(r'*.*xls*')
df = pd.DataFrame()
#fno is 0, 1, 2, ... (for each file)
for fno, each in enumerate(files):
sheets = pd.ExcelFile(each).sheet_names
# sno iss 0, 1, 2, ... (for each sheet)
for sno, sheet in enumerate(sheets):
FileNo = 'F' + str(fno) #F0, F1, F2, etc.
SheetNo = 'S' + str(sno) #S0, S1, S2, etc.
# print FileNo, SheetNo, each, sheet #debug info
#header = None if you don't want header or take this out.
#dfxl is dataframe of each xl sheet
dfxl = pd.read_excel(each, sheet, header=None)
#add column of FileNo and SheetNo to the dataframe
dfxl['FileNo'] = FileNo
dfxl['SheetNo'] = SheetNo
#now add the current xl sheet to main dataframe
df = df.append(dfxl)
After doing above.. i.e. reading multiple XL Files and Sheets into a single dataframe (df)... you can do this.. to get a sample row from each File, Sheet combination.. and the sample wil be available in dataframe (dfs1).
#get unique FileNo and SheetNo in dft2
dft2 = df.loc[0,['FileNo', 'SheetNo']]
#empty dataframe to collect sample from each of the read file/sheets
dfs1 = pd.DataFrame()
#loop through each sheet and fileno names
for row in dft2.itertuples():
#get a sample from each file to view
dfts = df[(df.FileNo == row[1]) & (df.SheetNo ==row[2])].sample(1)
#append the 1 sample to dfs1. this will have a sample row
# from each xl sheet and file
dfs1 = dfs1.append(dfts, ignore_index = True)
dfs1.to_clipboard()
Upvotes: 2
Reputation: 1166
First off, it appears you have a few different datasets in these files. You may want them all in one dataframe, but for now, I am going to assume you want them separated. Ex (All of the wind*.xls files in one dataframe and all of the stat*.xls files in another.) You could parse the data using read_excel
and then concatenate the results using the timestamp as the index as follows:
import numpy as np
import pandas as pd, datetime as dt
import glob, os
runDir = "Path to files"
if os.getcwd() != runDir:
os.chdir(runDir)
files = glob.glob("wind*.xls")
df = pd.DataFrame()
for each in files:
sheets = pd.ExcelFile(each).sheet_names
for sheet in sheets:
df = df.append(pd.read_excel(each, sheet, index_col='Fecha'))
You now have a time-indexed dataframe! If you really want to have all of the data in one dataframe (from all of the file types), you can just adjust the glob
to include all of the files using something like glob.glob('*.xls')
. I would warn from personal experience that it may be easier for you to read in each type of data separately and then merge them after you have done some error checking/munging etc.
Upvotes: 12