Reputation: 2329
I am trying to port some of my code from MatLab into Python and am running into problems with scipy.optimize.fmin_cg
function - this is the code I have at the moment:
My cost function:
def nn_costfunction2(nn_params,*args):
Theta1, Theta2 = reshapeTheta(nn_params)
input_layer_size, hidden_layer_size, num_labels, X, y, lam = args[0], args[1], args[2], args[3], args[4], args[5]
m = X.shape[0] #Length of vector
X = np.hstack((np.ones([m,1]),X)) #Add in the bias unit
layer1 = sigmoid(Theta1.dot(np.transpose(X))) #Calculate first layer
layer1 = np.vstack((np.ones([1,layer1.shape[1]]),layer1)) #Add in bias unit
layer2 = sigmoid(Theta2.dot(layer1))
y_matrix = np.zeros([y.shape[0],layer2.shape[0]]) #Create a matrix where vector position of one corresponds to label
for i in range(y.shape[0]):
y_matrix[i,y[i]-1] = 1
#Cost function
J = (1/m)*np.sum(np.sum(-y_matrix.T.conj()*np.log(layer2),axis=0)-np.sum((1-y_matrix.T.conj())*np.log(1-layer2),axis=0))
#Add in regularization
J = J+(lam/(2*m))*np.sum(np.sum(Theta1[:,1:].conj()*Theta1[:,1:])+np.sum(Theta2[:,1:].conj()*Theta2[:,1:]))
#Backpropagation with vectorization and regularization
delta_3 = layer2 - y_matrix.T
r2 = delta_3.T.dot(Theta2[:,1:])
z_2 = Theta1.dot(X.T)
delta_2 = r2*sigmoidGradient(z_2).T
t1 = (lam/m)*Theta1[:,1:]
t1 = np.hstack((np.zeros([t1.shape[0],1]),t1))
t2 = (lam/m)*Theta2[:,1:]
t2 = np.hstack((np.zeros([t2.shape[0],1]),t2))
Theta1_grad = (1/m)*(delta_2.T.dot(X))+t1
Theta2_grad = (1/m)*(delta_3.dot(layer1.T))+t2
nn_params = np.hstack([Theta1_grad.flatten(),Theta2_grad.flatten()]) #Unroll parameters
return nn_params
My call of the function:
args = (input_layer_size, hidden_layer_size, num_labels, X, y, lam)
fmin_cg(nn_costfunction2,nn_params, args=args,maxiter=50)
Gives the following error:
File "C:\WinPython3\python-3.3.2.amd64\lib\site-packages\scipy\optimize\optimize.py", line 588, in approx_fprime
grad[k] = (f(*((xk+d,)+args)) - f0) / d[k]
ValueError: setting an array element with a sequence.
I tried various permutations in passing arguments to fmin_cg but this is the farthest I got. Running the cost function on its own does not throw any errors in this form.
Upvotes: 0
Views: 892
Reputation: 726
I see this issue is due to the fact you let nnCostFunction2 return cost and grad.
But the scipy.optimize.fmin_cg function will only take single cost output of nnCostFunction2.
So retain single J or cost output from nnCostFunction2 function.
this is my function which is working:
scipy.optimize.fmin_cg(nnCostFunction, initial_rand_theta, backpropagate, \
args=(hidden_s, input_s, num_labels, X, y, lamb), maxiter=1000, \
disp=True, full_output=True)
Upvotes: 0
Reputation: 11
Try to add epsilon argument in function call:
fmin_cg(nn_costfunction2,nn_params, args=args,epsilon,maxiter=50)
Upvotes: 1
Reputation: 12699
The input variable in cost function should be an 1D array. So your Theta1
and Theta2
in J
have to be derived from nn_params
. And you need to return J
as well.
Upvotes: 1