Reputation: 311
I have two data sets, AAPL
and AMZN
, that I wish two merge but find it difficult to do so as merge
cbind
fail to do as I desire it to be. I believe the issues is recognizing the data sets as data.frames but not sure.
The data looks like this:
Date Time Open High Low Close Volume
1 12/14/12 9:30 514.75 515.10 512.72 512.86 2504264
2 12/14/12 9:31 512.80 513.00 510.00 510.17 574498
3 12/14/12 9:32 510.04 511.70 509.11 511.26 673126
4 12/14/12 9:33 511.26 511.54 508.82 509.25 477914
5 12/14/12 9:34 509.03 510.65 508.50 510.54 432689
Desired Outcome:
Date Time Open High Low Close Volume
12/14/12 9:30 250.11 250.64 250.07 250.37 38249
12/14/12 9:31 250.60 250.60 250.16 250.51 6954
12/14/12 9:32 250.47 250.72 250.43 250.72 3843
12/14/12 9:33 250.69 250.70 250.44 250.50 3990
12/14/12 9:34 250.46 250.64 250.21 250.31 4490
Date Time Open High Low Close Volume
12/14/12 9:31 512.80 513.00 510.00 510.17 574498
12/14/12 9:32 510.04 511.70 509.11 511.26 673126
12/14/12 9:33 511.26 511.54 508.82 509.25 477914
12/14/12 9:34 509.03 510.65 508.50 510.54 432689
Essentially, I want to merge the two data sets by Date
and Time
side-by-side (I could not do it on here). I have tried converting each data set to xts
but not sure if it is correct:
AAPL <- read.csv("aapl1.csv",header=TRUE)
AMZN <- read.csv("amzn1.csv",header=TRUE)
aapl <- xts(AAPL[,c(3:7)], AAPL$DATETIME <-as.POSIXct(paste(AAPL$Date,AAPL$Time), format=""%m/%d/%Y %H:%M"))
amzn <- xts(AMZN[,c(3:7)], AMZN$DATETIME <-as.POSIXct(paste(AMZN$Date,AMZN$Time), format=""%m/%d/%Y %H:%M"))
It then fails to merge when I use cbind
, merge
, or even join
.
Upvotes: 0
Views: 756
Reputation: 176698
Converting to xts and using merge
would work, once you fix a few issues in your code.
AAPL <- read.csv("aapl1.csv",header=TRUE)
AMZN <- read.csv("amzn1.csv",header=TRUE)
# your code is easier to understand if you create these columns outside of the
# xts constructor. Note that your `format` was incorrect. You need %y
# (2-digit year), not %Y (4-digit year). You also had unmatched quotes.
AAPL$DATETIME <- as.POSIXct(paste(AAPL$Date,AAPL$Time), format="%m/%d/%y %H:%M")
AMZN$DATETIME <- as.POSIXct(paste(AMZN$Date,AMZN$Time), format="%m/%d/%y %H:%M")
# create xts objects and merge
aapl <- xts(AAPL[,c(3:7)], AAPL$DATETIME)
amzn <- xts(AMZN[,c(3:7)], AMZN$DATETIME)
aapl.amzn <- merge(aapl,amzn)
Upvotes: 1
Reputation: 3252
A second alternative is join()
from the plyr
package. It has some advanteges over merge()
, but also provides less options. Would be recommendable for very large data sets because it is faster than merge()
.
require(plyr)
join(AAPL, AMZN, by = c("Date", "Time"))
Upvotes: 1
Reputation: 42679
If your xts
objects are indexed by the datetime (as they should be), simply pass the two sets to merge. Here, I'll merge a set with itself, as your question lacks example data:
data(sample_matrix)
sample.xts <- as.xts(head(sample_matrix), descr='my new xts object') # From ?xts
merge(sample.xts, sample.xts)
## Open High Low Close Open.1 High.1 Low.1 Close.1
## 2007-01-02 50.03978 50.11778 49.95041 50.11778 50.03978 50.11778 49.95041 50.11778
## 2007-01-03 50.23050 50.42188 50.23050 50.39767 50.23050 50.42188 50.23050 50.39767
## 2007-01-04 50.42096 50.42096 50.26414 50.33236 50.42096 50.42096 50.26414 50.33236
## 2007-01-05 50.37347 50.37347 50.22103 50.33459 50.37347 50.37347 50.22103 50.33459
## 2007-01-06 50.24433 50.24433 50.11121 50.18112 50.24433 50.24433 50.11121 50.18112
## 2007-01-07 50.13211 50.21561 49.99185 49.99185 50.13211 50.21561 49.99185 49.99185
This works because merge
calls merge.xts
for these data.
Here's a merge of your sample data, without using xts
. First, let's read them into the interpreter:
AAPL <- read.table(header=T, text='Date Time Open High Low Close Volume
12/14/12 9:30 250.11 250.64 250.07 250.37 38249
12/14/12 9:31 250.60 250.60 250.16 250.51 6954
12/14/12 9:32 250.47 250.72 250.43 250.72 3843
12/14/12 9:33 250.69 250.70 250.44 250.50 3990
12/14/12 9:34 250.46 250.64 250.21 250.31 4490')
AMZN <- read.table(header=T, text='Date Time Open High Low Close Volume
12/14/12 9:31 512.80 513.00 510.00 510.17 574498
12/14/12 9:32 510.04 511.70 509.11 511.26 673126
12/14/12 9:33 511.26 511.54 508.82 509.25 477914
12/14/12 9:34 509.03 510.65 508.50 510.54 432689')
These are now objects of class data.frame
and can be merged on the Date
and Time
columns:
merge(AAPL, AMZN, by=c('Date', 'Time'), all=T, suffixes = c('.AAPL', '.AMZN'))
## Date Time Open.AAPL High.AAPL Low.AAPL Close.AAPL Volume.AAPL Open.AMZN High.AMZN Low.AMZN Close.AMZN Volume.AMZN
## 1 12/14/12 9:30 250.11 250.64 250.07 250.37 38249 NA NA NA NA NA
## 2 12/14/12 9:31 250.60 250.60 250.16 250.51 6954 512.80 513.00 510.00 510.17 574498
## 3 12/14/12 9:32 250.47 250.72 250.43 250.72 3843 510.04 511.70 509.11 511.26 673126
## 4 12/14/12 9:33 250.69 250.70 250.44 250.50 3990 511.26 511.54 508.82 509.25 477914
## 5 12/14/12 9:34 250.46 250.64 250.21 250.31 4490 509.03 510.65 508.50 510.54 432689
Upvotes: 2