Reputation: 5
I have a "string"(molecule) of connected N objects(atoms) in 3D (each atom has a coordinates). And I need to calculate a distance between each pair of atoms in a molecule (see pseudo code below ). How could it be done with CUDA? Should I pass to a kernel function 2 3D Arrays? Or 3 arrays with coordinates: X[N], Y[N], Z[N]? Thanks.
struct atom { double x,y,z; }
int main()
{
//N number of atoms in a molecule
double DistanceMatrix[N][N];
double d;
atom Atoms[N];
for (int i = 0; i < N; i ++)
for (int j = 0; j < N; j++)
DistanceMatrix[i][j] = (atoms[i].x -atoms[j].x)*(atoms[i].x -atoms[j].x) +
(atoms[i].y -atoms[j].y)* (atoms[i].y -atoms[j].y) + (atoms[i].z -atoms[j].z)* (atoms[i].z -atoms[j].z;
}
Upvotes: 0
Views: 1994
Reputation: 15744
Unless you're working with very large molecules, there probably won't be enough work to keep the GPU busy, so calculations will be faster with the CPU.
If you meant to calculate the Euclidean distance, your calculation is not correct. You need the 3D version of the Pythagorean theorem.
I would use a SoA for storing the coordinates.
You want to generate a memory access pattern with as many coalesced reads and writes as possible. To do that, arrange for addresses or indexes generated by the 32 threads in each warp to be as close to each other as possible (a bit simplified).
threadIdx
designates thread indexes within a block and blockIdx
designates block indexes within the grid. blockIdx
is always the same for all threads in a warp. Only threadIdx
varies within the threads in a block. To visualize how the 3 dimensions of threadIdx
are assigned to threads, think of them as nested loops where x
is the inner loop and z
is the outer loop. So, threads with adjacent x
values are the most likely to be within the same warp and, if x
is divisible by 32, only threads sharing the same x / 32
value are within the same warp.
I have included a complete example for your algorithm below. In the example, the i
index is derived from threadIdx.x
so, to check that warps would generate coalesced reads and writes, I would go over the code while inserting a few consecutive values such as 0, 1 and 2 for i
and checking that the generated indexes would also be consecutive.
Addresses generated from the j
index are less important as j
is derived from threadIdx.y
and so is less likely to vary within a warp (and will never vary if threadIdx.x
is divisible by 32).
#include "cuda_runtime.h"
#include <iostream>
using namespace std;
const int N(20);
#define check(ans) { _check((ans), __FILE__, __LINE__); }
inline void _check(cudaError_t code, char *file, int line)
{
if (code != cudaSuccess) {
fprintf(stderr,"CUDA Error: %s %s %d\n", cudaGetErrorString(code), file, line);
exit(code);
}
}
int div_up(int a, int b) {
return ((a % b) != 0) ? (a / b + 1) : (a / b);
}
__global__ void calc_distances(double* distances,
double* atoms_x, double* atoms_y, double* atoms_z);
int main(int argc, char **argv)
{
double* atoms_x_h;
check(cudaMallocHost(&atoms_x_h, N * sizeof(double)));
double* atoms_y_h;
check(cudaMallocHost(&atoms_y_h, N * sizeof(double)));
double* atoms_z_h;
check(cudaMallocHost(&atoms_z_h, N * sizeof(double)));
for (int i(0); i < N; ++i) {
atoms_x_h[i] = i;
atoms_y_h[i] = i;
atoms_z_h[i] = i;
}
double* atoms_x_d;
check(cudaMalloc(&atoms_x_d, N * sizeof(double)));
double* atoms_y_d;
check(cudaMalloc(&atoms_y_d, N * sizeof(double)));
double* atoms_z_d;
check(cudaMalloc(&atoms_z_d, N * sizeof(double)));
check(cudaMemcpy(atoms_x_d, atoms_x_h, N * sizeof(double), cudaMemcpyHostToDevice));
check(cudaMemcpy(atoms_y_d, atoms_y_h, N * sizeof(double), cudaMemcpyHostToDevice));
check(cudaMemcpy(atoms_z_d, atoms_z_h, N * sizeof(double), cudaMemcpyHostToDevice));
double* distances_d;
check(cudaMalloc(&distances_d, N * N * sizeof(double)));
const int threads_per_block(256);
dim3 n_blocks(div_up(N, threads_per_block));
calc_distances<<<n_blocks, threads_per_block>>>(distances_d, atoms_x_d, atoms_y_d, atoms_z_d);
check(cudaPeekAtLastError());
check(cudaDeviceSynchronize());
double* distances_h;
check(cudaMallocHost(&distances_h, N * N * sizeof(double)));
check(cudaMemcpy(distances_h, distances_d, N * N * sizeof(double), cudaMemcpyDeviceToHost));
for (int i(0); i < N; ++i) {
for (int j(0); j < N; ++j) {
cout << "(" << i << "," << j << "): " << distances_h[i + N * j] << endl;
}
}
check(cudaFree(distances_d));
check(cudaFreeHost(distances_h));
check(cudaFree(atoms_x_d));
check(cudaFreeHost(atoms_x_h));
check(cudaFree(atoms_y_d));
check(cudaFreeHost(atoms_y_h));
check(cudaFree(atoms_z_d));
check(cudaFreeHost(atoms_z_h));
return 0;
}
__global__ void calc_distances(double* distances,
double* atoms_x, double* atoms_y, double* atoms_z)
{
int i(threadIdx.x + blockIdx.x * blockDim.x);
int j(threadIdx.y + blockIdx.y * blockDim.y);
if (i >= N || j >= N) {
return;
}
distances[i + N * j] =
(atoms_x[i] - atoms_x[j]) * (atoms_x[i] - atoms_x[j]) +
(atoms_y[i] - atoms_y[j]) * (atoms_y[i] - atoms_y[j]) +
(atoms_z[i] - atoms_z[j]) * (atoms_z[i] - atoms_z[j]);
}
Upvotes: 1