Reputation: 916
I have a pandas dataFrame like this:
content
date
2013-12-18 12:30:00 1
2013-12-19 10:50:00 1
2013-12-24 11:00:00 0
2014-01-02 11:30:00 1
2014-01-03 11:50:00 0
2013-12-17 16:40:00 10
2013-12-18 10:00:00 0
2013-12-11 10:00:00 0
2013-12-18 11:45:00 0
2013-12-11 14:40:00 4
2010-05-25 13:05:00 0
2013-11-18 14:10:00 0
2013-11-27 11:50:00 3
2013-11-13 10:40:00 0
2013-11-20 10:40:00 1
2008-11-04 14:49:00 1
2013-11-18 10:05:00 0
2013-08-27 11:00:00 0
2013-09-18 16:00:00 0
2013-09-27 11:40:00 0
date being the index. I reduce the values to months using:
dataFrame = dataFrame.groupby([lambda x: x.year, lambda x: x.month]).agg([sum])
which outputs:
content
sum
2006 3 66
4 65
5 48
6 87
7 37
8 54
9 73
10 74
11 53
12 45
2007 1 28
2 40
3 95
4 63
5 56
6 66
7 50
8 49
9 18
10 28
Now when I plot this dataFrame, I want the x-axis show every month/year as a tick. I have tries setting xticks but it doesn't seem to work. How could this be achieved? This is my current plot using dataFrame.plot():
Upvotes: 19
Views: 25336
Reputation: 814
You can do it within Pandas plotting function like:
df.col.plot.line(
figsize=(10,8),
title='Figure Title',
xlabel='Year, Month',
xticks=range(len(df)),
rot=90
)
Where:
xticks
is the parameter where you set the frequency of the ticks on the abscissarot
rotates the abscissa labels by 90 degreesI find this quicker for rapid visualisation.
Upvotes: 0
Reputation: 97331
You can use set_xtick()
and set_xticklabels()
:
idx = pd.date_range("2013-01-01", periods=1000)
val = np.random.rand(1000)
serie = pd.Series(val, idx)
df = serie.groupby([serie.index.year, serie.index.month]).mean()
ax = df.plot()
ax.set_xticks(range(len(df)))
ax.set_xticklabels(["%s-%02d" % item for item in df.index.tolist()], rotation=90)
output:
Upvotes: 34