Reputation: 81
I am trying to define a one variable g function from a multivariable function G:
def dG(thetaf,psi,gamma) :
return 0.35*(cos(psi))**2*(2*sin(3*thetaf/2+2*gamma)+(1+4*sin(gamma)**2)*sin(thetaf/2)-sin(3*thetaf/2))+sin(psi)**2*sin(thetaf/2)
g = lambda thetaf: dG(thetaf,psi,gamma)
unfortunately this is not working and the error i receive is that :
only length-1 arrays can be converted to Python scalars
Upvotes: 0
Views: 571
Reputation: 325
Next time, please include the script in your original question in a nice format. It makes helping go faster.
I think it is just a simple mistake. You get theta and phi out of gamma and psi respectively, but then you never use them. Did you mean to use those as your parameters in g? If so, then it should look something like this
from numpy import sin, cos, arange, linspace, pi, zeros
import scipy.optimize as opt
def dG(thetaf, psi, gamma):
return 0.35*(cos(psi))**2*(2*sin(3*thetaf/2+2*gamma)+(1+4*sin(gamma)**2)*sin(thetaf/2)-sin(3*thetaf/2))+sin(psi)**2*sin(thetaf/2)
nt = 100
np = 100
gamma = linspace(0, pi/2, nt)
psi = linspace(0, pi/2, np)
x = zeros((nt, np))
for i, theta in enumerate(gamma):
for j, phi in enumerate(psi):
print('i = %d, j = %d') %(i, j)
g = lambda thetaf: dG(thetaf,phi,theta)
x[i,j] = opt.brenth(g,-pi/2,pi/2)
Upvotes: 0
Reputation: 7736
You have to define some default values. If you do this by using keyword arguments, you don't even need to define a separate function.
from numpy import sin, cos, arange
def dG(thetaf,psi=0.5,gamma=1) :
return 0.35*(cos(psi))**2*(2*sin(3*thetaf/2+2*gamma)+(1+4*sin(gamma)**2)*sin(thetaf/2)-sin(3*thetaf/2))+sin(psi)**2*sin(thetaf/2)
thetaf = arange(10)
print dG(thetaf)
>>> [ 0.4902 0.1475 0.5077 1.6392 1.757 0.4624 -0.472 -0.2416 -0.2771 -1.3398]
You actually can define a separate function, but using keyword defaults is the cleaner alternative.
g = lambda tf: dG(tf, 0.5, 1)
g(thetaf)
array([ 0.4902, 0.1475, 0.5077, 1.6392, 1.757 , 0.4624, -0.472 ,
-0.2416, -0.2771, -1.3398])
Upvotes: 1