Reputation: 627
I have written a function to compute the median value of a list
task3 xs | null xs = Nothing
| odd len = xs !! mid
| even len = evenMedian
where len = length xs
mid = len `div` 2
evenMedian = (xs !! mid + xs !! (mid+1)) / 2
I thought it is right and it also pass the load. But when I use the function, it did not work. What is wrong here?
Upvotes: 1
Views: 7947
Reputation: 2041
How about Median of Medians? Note that this computes only an approximation to the median.
Here is a Haskell implementation:
import Data.List
median :: Ord a => [a] -> a
median xs = select (length xs `div` 2) xs
select :: Ord a => Int -> [a] -> a
select i xs
| n <= 5
= sort xs !! i
| lengthLower == i
= medianOfMedians
| lengthLower < i
= select (i - lengthLower - 1) upperPartition
| otherwise
= select i lowerPartition
where
n = length xs
medianOfMedians = median (map median (chunksOf 5 xs))
(lowerPartition, _:upperPartition) = partition (< medianOfMedians) xs
lengthLower = length lowerPartition
chunksOf :: Int -> [a] -> [[a]]
chunksOf _ [] = []
chunksOf n xs
| (beginning, rest) <- splitAt n xs
= beginning : chunksOf n rest
Upvotes: 3
Reputation: 1043
My version of median
for Integer
import Data.List (sort)
getMiddle [] = 0
getMiddle xs = (a' + b') `div` 2
where a' = head $ drop a xs
b' = head $ drop b xs
a = (n `div` 2)
b = n' - 1
n' = n `div` 2
n = length xs
median :: [Integer] -> Integer
median [] = 0
median xs = result
where result = if (n `mod` 2 == 0)
then getMiddle sorted
else head $ drop a sorted
a = (n - 1) `div` 2
n = length xs
sorted = sort xs
main = print $ median [1, 4, 5, 7, 9, 100]
-- 6
Upvotes: 1
Reputation: 469
Recursion could do the job also.
import Data.List
medianFromSorted :: Fractional a => [a] -> Maybe a
medianFromSorted [] = Nothing
medianFromSorted [a] = Just a
medianFromSorted [a,b] = Just ((a + b) / 2)
medianFromSorted (a:xs) = medianFromSorted (init xs) -- init is not efficient
median :: Ord a => Fractional a => [a] -> Maybe a
median = medianFromSorted . sort
Upvotes: 1
Reputation: 305
Even with kaan's answer, this code will still not produce a correct median. Another issue that has been overlooked is that Haskell lists are zero indexed. As a result, all of the code is correct with kaan's additions except
evenMedian = (xs !! mid + xs !! (mid+1)) / 2
which should actually be
evenMedian = (xs !! (mid - 1) + xs !! mid) / 2
Otherwise the result is incorrect. The wrong way produces task3 [1, 2, 3, 4] == Just 3.5, while the correct way produces task3 [1, 2, 3, 4] == Just 2.5
Upvotes: 0
Reputation: 796
As Lee mentioned, the list must be sorted first. (The median of [1,1,8,1,1] is 1 (not 8). so you have to sort it to [1,1,1,1,8] and then take the one in the middle).
The other thing is, that you return Nothing
, so the other results have to be of type Maybe a
too:
Just $ xs !! mid
Just evenMedian
You can use sort
from Data.List
to sort your list before applying it to task3.
Like so:
task xs = task3 (sort xs)
Upvotes: 4