Reputation: 2632
I am making a program in Java in which a ball bounces around on the screen. The user can add other balls, and they all bounce off of each other. My question lies in the storage of the added balls. At the moment, I am using an ArrayList to store them, and every time the space bar is pressed, a new ball class is created and added to an Array List. Is this the most efficient way of doing things? I don't specify the size of the Array List at the beginning, so is it inefficient to have to allocate a new space on the array every time the user wants a new ball, even if the ball count will get up in the hundreds? Is there another class I could use to handle this in a more efficient manner?
Thanks!
EDIT:
Sorry, I should have been more clear. I iterate through the balls every 30 milliseconds, using nested for loops to see if they are intersecting with each other. I do access one ball the most often (the ball which the user can control with the arrow keys, another feature of the game), but the user can choose to switch control balls. Balls are never removed. So, I am performing some fairly complex calculations (I use my own vector class to move them off of each other every time there is a collision) on the balls very often.
Upvotes: 1
Views: 3095
Reputation: 30276
About ArrayList
in Java, the complexity of remove at the end and add one element is Amortize O(1)
. Or, you can say, it's almost efficient in most cases. (In some rare cases, it will be awful.)
But you should think more carefully about your design before choosing your data structure.
How many objects often in your collection. If it's small, you can free to choose any data structure that you feel easily to work with. it will almost doesn't lost performance for your code.
If you often find one ball in all of your balls, another datastructure such as HashMap
or HashSet
would be better.
Or you often delete at middle of your list, maybe LinkedList
will be appropriate choice :)
Upvotes: 4
Reputation: 2630
Measure it and find out! In all seriousness, often times the best way to get answers to these questions is to set up a benchmark and swap in different collection types.
I can tell you that it won't allocate new space every time you add a new item to the ArrayList. Extra space is allocated so that it has room to grow.
LinkedList is another List option. It is super cheap to add items, but random access (list.get(10)) is expensive. Sets could also be good if you don't need ordered access (though there are ordered sets, too), and you want a Map implementation if you're accessing them by some sort of key/id. It really all depends on how you're using the collection.
Update based on added details It sounds like you are mostly doing sequential reads through the entire list. In that scenario, a LinkedList is probably your best choice. Though again, if you only expose the List interface to the rest of your code (or even a more general Collection), you can easily swap in different implementations and actually measure the difference.
Upvotes: 5
Reputation: 726489
ArrayList
is a highly optimized and very efficient wrapper on top of a plain Java array. A small timing overhead comes from copying array elements, which happens when the allocated size is less than required number of elements. When you grow the array into a few hundreds of items, the copying will happen less than ten times, so the price you pay for not knowing the size in advance is very small. You can further reduce that overhead by suggesting an initial size for your ArrayList
.
Removing from the middle of the ArrayList
does take linear time. If you plan to remove items and/or insert them in the middle of the list frequently, this may become an issue. Note, however, that the overhead is not going to be worse than that for a plain array.
I iterate through the balls every 30 milliseconds, using nested for loops to see if they are intersecting with each other.
This does not have much to do with the collection in which the balls are stored. You could use a spatial index to improve the speed of finding intersections.
Upvotes: 4
Reputation: 3455
I'd recommend working out the way in which you need to access the balls, and pick an appropriate interface (Not implementation) eg. If you're accessing sequentially only, use a List. If you need to look up the ball by ID, think of a Map. The interface should match your requirements in terms of functionality, not in terms of speed/efficiency.
Then pick an implementation, eg. HashMap or TreeMap, and write your code.
Afterwards, profile it - Is your code inefficient in the ball access code? If so, then try to optimise by switching to an alternate implementation thats more appropriate to your needs.
Upvotes: 3