Reputation: 15718
I have the following data:
height = 1:10000000
length = -(1:10000000)
body_dim = data.frame(height,length)
body_dim_mat = as.matrix(body_dim)
Why does which()
work faster for the data frame compared to the matrix?
> microbenchmark(body_dim[which(body_dim$height==50000),"length"])
Unit: milliseconds
expr min lq median uq max neval
body_dim[which(body_dim$height == 50000), "length"] 124.4586 125.1625 125.9281 127.9496 284.9824 100
> microbenchmark(body_dim_mat[which(body_dim_mat[,1] == 50000),2])
Unit: milliseconds
expr min lq median uq max neval
body_dim_mat[which(body_dim_mat[, 1] == 50000), 2] 251.1282 252.4457 389.7251 400.313 1004.25 100
Upvotes: 3
Views: 75
Reputation: 4941
It seems that problem is before which()
, subsetting of data.frame
column is simply faster if compared to subsetting of whole matrix:
microbenchmark(body_dim$height==50000)
# Unit: milliseconds
# expr min lq median uq max neval
# body_dim$height == 50000 138.2619 148.5132 170.1895 170.8909 249.4592 100
microbenchmark(body_dim_mat[,1]==50000)
# Unit: milliseconds
# expr min lq median uq max neval
# body_dim_mat[, 1] == 50000 299.599 308.6066 310.9036 354.4641 432.7833 100
By the way, this case is where data.table
can shine:
require(data.table)
dt <- data.table(body_dim, key="height")
microbenchmark(dt[J(50000)]$length, unit="ms")
# Unit: milliseconds
# expr min lq median uq max neval
# dt[J(50000)]$length 0.96637 0.97908 0.989772 1.025257 2.588402 100
Upvotes: 1
Reputation: 132864
A data.frame is a list and a column is a simple vector and very easy to extract from the list. A matrix is a vector with dimension attributes. Which values belong to one column has to be calculated from the dimensions. This effects subsetting, which you include in your benchmarks:
library(microbenchmark)
set.seed(42)
m <- matrix(rnorm(1e5), ncol=10)
DF <- as.data.frame(m)
microbenchmark(m[,1], DF[,1], DF$V1)
#Unit: microseconds
# expr min lq median uq max neval
# m[, 1] 80.997 82.536 84.230 87.1560 1147.795 100
#DF[, 1] 15.399 16.939 20.789 22.6365 100.090 100
# DF$V1 1.849 2.772 3.389 4.3130 90.235 100
However, the take-home message is not that you should always use a data.frame. Because if you do subsetting, where the result is not a vector:
microbenchmark(m[1:10, 1:10], DF[1:10, 1:10])
# Unit: microseconds
# expr min lq median uq max neval
# m[1:10, 1:10] 1.233 1.8490 3.2345 3.697 11.087 100
# DF[1:10, 1:10] 211.267 219.7355 228.2050 252.226 1265.131 100
Upvotes: 5