Reputation: 1947
I understand that:
atan2(vector.y, vector.x)
= the angle between the vector and the X axis.
But I wanted to know how to get the angle between two vectors using atan2. So I came across this solution:
atan2(vector1.y - vector2.y, vector1.x - vector2.x)
My question is very simple:
Will the two following formulas produce the same number?
atan2(vector1.y - vector2.y, vector1.x - vector2.x)
atan2(vector2.y - vector1.y, vector2.x - vector1.x)
If not: How do I know what vector comes first in the subtractions?
Upvotes: 88
Views: 179725
Reputation: 540065
atan2(vector1.y - vector2.y, vector1.x - vector2.x)
is the angle between the difference vector (connecting vector2 and vector1) and the x-axis, which is problably not what you meant.
The (directed) angle from vector1 to vector2 can be computed as
angle = atan2(vector2.y, vector2.x) - atan2(vector1.y, vector1.x);
and you may want to normalize it to the range [0, 2 π):
if (angle < 0) { angle += 2 * M_PI; }
or to the range (-π, π]:
if (angle > M_PI) { angle -= 2 * M_PI; }
else if (angle <= -M_PI) { angle += 2 * M_PI; }
Upvotes: 172
Reputation: 29274
A robust way to do it is by finding the sine of the angle using the cross product, and the cosine of the angle using the dot product and combining the two with the Atan2()
function.
In C#
this is:
public struct Vector2
{
public double X, Y;
/// <summary>
/// Returns the angle between two vectos
/// </summary>
public static double GetAngle(Vector2 A, Vector2 B)
{
// |A·B| = |A| |B| COS(θ)
// |A×B| = |A| |B| SIN(θ)
return Math.Atan2(Cross(A,B), Dot(A,B));
}
public double Magnitude { get { return Math.Sqrt(Dot(this,this)); } }
public static double Dot(Vector2 A, Vector2 B)
{
return A.X*B.X+A.Y*B.Y;
}
public static double Cross(Vector2 A, Vector2 B)
{
return A.X*B.Y-A.Y*B.X;
}
}
class Program
{
static void Main(string[] args)
{
Vector2 A=new Vector2() { X=5.45, Y=1.12};
Vector2 B=new Vector2() { X=-3.86, Y=4.32 };
double angle=Vector2.GetAngle(A, B) * 180/Math.PI;
// angle = 120.16850967865749
}
}
See the test case above in GeoGebra.
Upvotes: 61
Reputation: 3465
Here a little program in Python that uses the angle between vectors to determine if a point is inside or outside a certain polygon
import sys
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from shapely.geometry import Point, Polygon
from pprint import pprint
# Plot variables
x_min, x_max = -6, 12
y_min, y_max = -3, 8
tick_interval = 1
FIG_SIZE = (10, 10)
DELTA_ERROR = 0.00001
IN_BOX_COLOR = 'yellow'
OUT_BOX_COLOR = 'black'
def angle_between(v1, v2):
""" Returns the angle in radians between vectors 'v1' and 'v2'
The sign of the angle is dependent on the order of v1 and v2
so acos(norm(dot(v1, v2))) does not work and atan2 has to be used, see:
https://stackoverflow.com/questions/21483999/using-atan2-to-find-angle-between-two-vectors
"""
arg1 = np.cross(v1, v2)
arg2 = np.dot(v1, v2)
angle = np.arctan2(arg1, arg2)
return angle
def point_inside(point, border):
""" Returns True if point is inside border polygon and False if not
Arguments:
:point: x, y in shapely.geometry.Point type
:border: [x1 y1, x2 y2, ... , xn yn] in shapely.geomettry.Polygon type
"""
assert len(border.exterior.coords) > 2,\
'number of points in the polygon must be > 2'
point = np.array(point)
side1 = np.array(border.exterior.coords[0]) - point
sum_angles = 0
for border_point in border.exterior.coords[1:]:
side2 = np.array(border_point) - point
angle = angle_between(side1, side2)
sum_angles += angle
side1 = side2
# if wn is 1 then the point is inside
wn = sum_angles / 2 / np.pi
if abs(wn - 1) < DELTA_ERROR:
return True
else:
return False
class MainMap():
@classmethod
def settings(cls, fig_size):
# set the plot outline, including axes going through the origin
cls.fig, cls.ax = plt.subplots(figsize=fig_size)
cls.ax.set_xlim(-x_min, x_max)
cls.ax.set_ylim(-y_min, y_max)
cls.ax.set_aspect(1)
tick_range_x = np.arange(round(x_min + (10*(x_max - x_min) % tick_interval)/10, 1),
x_max + 0.1, step=tick_interval)
tick_range_y = np.arange(round(y_min + (10*(y_max - y_min) % tick_interval)/10, 1),
y_max + 0.1, step=tick_interval)
cls.ax.set_xticks(tick_range_x)
cls.ax.set_yticks(tick_range_y)
cls.ax.tick_params(axis='both', which='major', labelsize=6)
cls.ax.spines['left'].set_position('zero')
cls.ax.spines['right'].set_color('none')
cls.ax.spines['bottom'].set_position('zero')
cls.ax.spines['top'].set_color('none')
@classmethod
def get_ax(cls):
return cls.ax
@staticmethod
def plot():
plt.tight_layout()
plt.show()
class PlotPointandRectangle(MainMap):
def __init__(self, start_point, rectangle_polygon, tolerance=0):
self.current_object = None
self.currently_dragging = False
self.fig.canvas.mpl_connect('key_press_event', self.on_key)
self.plot_types = ['o', 'o-']
self.plot_type = 1
self.rectangle = rectangle_polygon
# define a point that can be moved around
self.point = patches.Circle((start_point.x, start_point.y), 0.10,
alpha=1)
if point_inside(start_point, self.rectangle):
_color = IN_BOX_COLOR
else:
_color = OUT_BOX_COLOR
self.point.set_color(_color)
self.ax.add_patch(self.point)
self.point.set_picker(tolerance)
cv_point = self.point.figure.canvas
cv_point.mpl_connect('button_release_event', self.on_release)
cv_point.mpl_connect('pick_event', self.on_pick)
cv_point.mpl_connect('motion_notify_event', self.on_motion)
self.plot_rectangle()
def plot_rectangle(self):
x = [point[0] for point in self.rectangle.exterior.coords]
y = [point[1] for point in self.rectangle.exterior.coords]
# y = self.rectangle.y
self.rectangle_plot, = self.ax.plot(x, y,
self.plot_types[self.plot_type], color='r', lw=0.4, markersize=2)
def on_release(self, event):
self.current_object = None
self.currently_dragging = False
def on_pick(self, event):
self.currently_dragging = True
self.current_object = event.artist
def on_motion(self, event):
if not self.currently_dragging:
return
if self.current_object == None:
return
point = Point(event.xdata, event.ydata)
self.current_object.center = point.x, point.y
if point_inside(point, self.rectangle):
_color = IN_BOX_COLOR
else:
_color = OUT_BOX_COLOR
self.current_object.set_color(_color)
self.point.figure.canvas.draw()
def remove_rectangle_from_plot(self):
try:
self.rectangle_plot.remove()
except ValueError:
pass
def on_key(self, event):
# with 'space' toggle between just points or points connected with
# lines
if event.key == ' ':
self.plot_type = (self.plot_type + 1) % 2
self.remove_rectangle_from_plot()
self.plot_rectangle()
self.point.figure.canvas.draw()
def main(start_point, rectangle):
MainMap.settings(FIG_SIZE)
plt_me = PlotPointandRectangle(start_point, rectangle) #pylint: disable=unused-variable
MainMap.plot()
if __name__ == "__main__":
try:
start_point = Point([float(val) for val in sys.argv[1].split()])
except IndexError:
start_point= Point(0, 0)
border_points = [(-2, -2),
(1, 1),
(3, -1),
(3, 3.5),
(4, 1),
(5, 1),
(4, 3.5),
(5, 6),
(3, 4),
(3, 5),
(-0.5, 1),
(-3, 1),
(-1, -0.5),
]
border_points_polygon = Polygon(border_points)
main(start_point, border_points_polygon)
Upvotes: 1
Reputation: 77
The formula, angle(vector.b,vector.a)
, that I sent, give results
in the four quadrants and for any coordinates xa,ya
and xb,yb
.
For coordinates xa=ya=0
and or xb=yb=0
is undefined.
The angle can be bigger or smaller than pi
, and can be positive
or negative.
Upvotes: 1
Reputation: 77
angle(vector.b,vector.a)=pi/2*((1+sgn(xa))*(1-sgn(ya^2))-(1+sgn(xb))*(1-sgn(yb^2)))
+pi/4*((2+sgn(xa))*sgn(ya)-(2+sgn(xb))*sgn(yb))
+sgn(xa*ya)*atan((abs(xa)-abs(ya))/(abs(xa)+abs(ya)))
-sgn(xb*yb)*atan((abs(xb)-abs(yb))/(abs(xb)+abs(yb)))
xb,yb and xa,ya are the coordinates of the two vectors
Upvotes: 1
Reputation: 81
Nobody pointed out that if you have a single vector, and want to find the angle of the vector from the X axis, you can take advantage of the fact that the argument to atan2() is actually the slope of the line, or (delta Y / delta X). So if you know the slope, you can do the following:
given:
A = angle of the vector/line you wish to determine (from the X axis).
m = signed slope of the vector/line.
then:
A = atan2(m, 1)
Very useful!
Upvotes: 8
Reputation: 8349
As a complement to the answer of @martin-r one should note that it is possible to use the sum/difference formula for arcus tangens.
angle = atan2(vec2.y, vec2.x) - atan2(vec1.y, vec1.x);
angle = -atan2(vec1.x * vec2.y - vec1.y * vec2.x, dot(vec1, vec2))
where dot = vec1.x * vec2.x + vec1.y * vec2.y
Upvotes: 2
Reputation: 390
You don't have to use atan2 to calculate the angle between two vectors. If you just want the quickest way, you can use dot(v1, v2)=|v1|*|v2|*cos A
to get
A = Math.acos( dot(v1, v2)/(v1.length()*v2.length()) );
Upvotes: 1
Reputation: 850
If you care about accuracy for small angles, you want to use this:
angle = 2*atan2(|| ||b||a - ||a||b ||, || ||b||a + ||a||b ||)
Where "||" means absolute value, AKA "length of the vector". See https://math.stackexchange.com/questions/1143354/numerically-stable-method-for-angle-between-3d-vectors/1782769
However, that has the downside that in two dimensions, it loses the sign of the angle.
Upvotes: 2
Reputation: 456
I think a better formula was posted here: http://www.mathworks.com/matlabcentral/answers/16243-angle-between-two-vectors-in-3d
angle = atan2(norm(cross(a,b)), dot(a,b))
So this formula works in 2 or 3 dimensions. For 2 dimensions this formula simplifies to the one stated above.
Upvotes: 28