veena
veena

Reputation: 865

convert csv file to list of dictionaries

I have a csv file

col1, col2, col3
1, 2, 3
4, 5, 6

I want to create a list of dictionary from this csv.

output as :

a= [{'col1':1, 'col2':2, 'col3':3}, {'col1':4, 'col2':5, 'col3':6}]

How can I do this?

Upvotes: 71

Views: 81687

Answers (8)

jedreety
jedreety

Reputation: 1

My solution for your question :

output = []

with open("test.csv", "r") as csv_file:
    data = csv_file.read().split("\n")

text = [data[i].split(",") for i in range(len(data))]

for i in range(1, len(text)) :
    output.append({text[0][num]:text[i][num] for num in range(len(text[i]))})

the output being the list of dico

Upvotes: 0

Simon
Simon

Reputation: 528

Another simpler answer:

import csv
with open("configure_column_mapping_logic.csv", "r") as f:
    reader = csv.DictReader(f)
    a = list(reader)
    print a

Upvotes: 43

Prasanth Bendra
Prasanth Bendra

Reputation: 32840

Answering here after long time as I don't see any updated/relevant answers.

df = pd.read_csv('Your csv file path')  
data = df.to_dict('records')
print( data )

Upvotes: 7

falsetru
falsetru

Reputation: 369494

Use csv.DictReader:

import csv

with open('test.csv') as f:
    a = [{k: int(v) for k, v in row.items()}
        for row in csv.DictReader(f, skipinitialspace=True)]

Will result in :

[{'col2': 2, 'col3': 3, 'col1': 1}, {'col2': 5, 'col3': 6, 'col1': 4}]

Upvotes: 114

Mitul Panchal
Mitul Panchal

Reputation: 632

Simple method to parse CSV into list of dictionaries

with open('/home/mitul/Desktop/OPENEBS/test.csv', 'rb') as infile:
  header = infile.readline().split(",")
  for line in infile:
    fields = line.split(",")
    entry = {}
    for i,value in enumerate(fields):
      entry[header[i].strip()] = value.strip()
      data.append(entry)

Upvotes: 1

MOCKBA
MOCKBA

Reputation: 1790

# similar solution via namedtuple:    

import csv
from collections import namedtuple

with open('foo.csv') as f:
  fh = csv.reader(open(f, "rU"), delimiter=',', dialect=csv.excel_tab)
  headers = fh.next()
  Row = namedtuple('Row', headers)
  list_of_dicts = [Row._make(i)._asdict() for i in fh]

Upvotes: 2

user3030010
user3030010

Reputation: 1867

Well, while other people were out doing it the smart way, I implemented it naively. I suppose my approach has the benefit of not needing any external modules, although it will probably fail with weird configurations of values. Here it is just for reference:

a = []
with open("csv.txt") as myfile:
    firstline = True
    for line in myfile:
        if firstline:
            mykeys = "".join(line.split()).split(',')
            firstline = False
        else:
            values = "".join(line.split()).split(',')
            a.append({mykeys[n]:values[n] for n in range(0,len(mykeys))})

Upvotes: 1

Ashwini Chaudhary
Ashwini Chaudhary

Reputation: 251196

Using the csv module and a list comprehension:

import csv
with open('foo.csv') as f:
    reader = csv.reader(f, skipinitialspace=True)
    header = next(reader)
    a = [dict(zip(header, map(int, row))) for row in reader]
print a    

Output:

[{'col3': 3, 'col2': 2, 'col1': 1}, {'col3': 6, 'col2': 5, 'col1': 4}]

Upvotes: 11

Related Questions