Reputation: 697
After reading question Why is processing a sorted array faster than an unsorted array? We had tried to make variables as volatile (I expected that, when I use volatile it must be working slower, but it's working faster) Here is my code without volatile: (It is working about 11 sec.)
import java.util.Arrays;
import java.util.Random;
public class GGGG {
public static void main(String[] args) {
int arraySize = 32768;
int data[];
data = new int[arraySize];
Random rnd = new Random(0);
for (int c = 0; c < arraySize; ++c) {
data[c] = rnd.nextInt() % 256;
}
Arrays.sort(data);
long start = System.nanoTime();
long sum = 0;
for (int i = 0; i < 200000; ++i) {
for (int c = 0; c < arraySize; ++c) {
if (data[c] >= 128) {
sum += data[c];
}
}
}
System.out.println((System.nanoTime() - start) / 1000000000.0);
System.out.println("sum = " + sum);
System.out.println("=========================");
}
And output is:
10.876173341
sum = 310368400000
=========================
And this is when I use arraySize and data variables as volatile, and it is working about 7 seconds:
import java.util.Arrays;
import java.util.Random;
public class GGGG {
static volatile int arraySize = 32768;
static volatile int data[];
public static void main(String[] args) {
data = new int[arraySize];
Random rnd = new Random(0);
for (int c = 0; c < arraySize; ++c) {
data[c] = rnd.nextInt() % 256;
}
Arrays.sort(data);
long start = System.nanoTime();
long sum = 0;
for (int i = 0; i < 200000; ++i) {
for (int c = 0; c < arraySize; ++c) {
if (data[c] >= 128) {
sum += data[c];
}
}
}
System.out.println((System.nanoTime() - start) / 1000000000.0);
System.out.println("sum = " + sum);
System.out.println("=========================");
}
And output with volatile is:
6.776267265
sum = 310368400000
=========================
All I was expecting to slow down the process with volatile, but it's working faster. What's happened?
Upvotes: 1
Views: 512
Reputation: 200206
I'll name just two main issues with your code:
main
method, therefore JIT-compiled code can be run only by On-Stack Replacement.Redoing your case with the jmh
tool, I get the times just as expected.
@OutputTimeUnit(TimeUnit.MICROSECONDS)
@BenchmarkMode(Mode.AverageTime)
@Warmup(iterations = 3, time = 2)
@Measurement(iterations = 5, time = 3)
@State(Scope.Thread)
@Threads(1)
@Fork(2)
public class Writing
{
static final int ARRAY_SIZE = 32768;
int data[] = new int[ARRAY_SIZE];
volatile int volatileData[] = new int[ARRAY_SIZE];
@Setup public void setup() {
Random rnd = new Random(0);
for (int c = 0; c < ARRAY_SIZE; ++c) {
data[c] = rnd.nextInt() % 256;
volatileData[c] = rnd.nextInt() % 256;
}
Arrays.sort(data);
System.arraycopy(data, 0, volatileData, 0, ARRAY_SIZE);
}
@GenerateMicroBenchmark
public long sum() {
long sum = 0;
for (int c = 0; c < ARRAY_SIZE; ++c) if (data[c] >= 128) sum += data[c];
return sum;
}
@GenerateMicroBenchmark
public long volatileSum() {
long sum = 0;
for (int c = 0; c < ARRAY_SIZE; ++c) if (volatileData[c] >= 128) sum += volatileData[c];
return sum;
}
}
These are the results:
Benchmark Mode Samples Mean Mean error Units
sum avgt 10 21.956 0.221 us/op
volatileSum avgt 10 40.561 0.264 us/op
Upvotes: 8