Reputation: 23
I am very new to C so sorry in advance if this is really basic. This is related to homework.
I have several helper functions, and each changes the value of a given variable (binary operations mostly), i.e.:
void helper1(unsigned short *x, arg1, arg2) --> x = &some_new_x
The main function calls other arguments arg3, arg4, arg5. The x is supposed to start at 0 (16-bit 0) at first, then be modified by helper functions, and after all the modifications, should be eventually returned by mainFunction.
Where do I declare the initial x and how/where do I allocate/free memory? If I declare it within mainFunc, it will reset to 0 every time helpers are called. If I free and reallocate memory inside helper functions, I get the "pointer being freed was not allocated" error even though I freed and allocated everything, or so I thought. A global variable doesn't do, either.
I would say that I don't really fully understand memory allocation, so I assume that my problem is with this, but it's entirely possible I just don't understand how to change variable values in C on a more basic level...
Upvotes: 2
Views: 2207
Reputation: 24269
Functions receive a value-wise copy of their inputs to locally scoped variables. Thus a helper function cannot possibly change the value it was called with, only its local copy.
void f(int n)
{
n = 2;
}
int main()
{
int n = 1;
f(n);
return 0;
}
Despite having the same name, n
in f
is local to the invocation of f
. So the n
in main
never changes.
The way to work around this is to pass by pointer:
int f(int *n)
{
*n = 2;
}
int main()
{
int n = 1;
f(&n);
// now we also see n == 2.
return 0;
}
Note that, again, n
in f
is local, so if we changed the pointer n
in f
, it would have no effect on main
's perspective. If we wanted to change the address n
in main
, we'd have to pass the address of the pointer.
void f1(int* nPtr)
{
nPtr = malloc(sizeof int);
*nPtr = 2;
}
void f2(int** nPtr)
{
// since nPtr is a pointer-to-a-pointer,
// we have to dereference it once to
// reach the "pointer-to-int"
// typeof nPtr = (int*)*
// typeof *nPtr = int*
*nPtr = malloc(sizeof int);
// deref once to get to int*, deref that for int
**nPtr = 2;
}
int main()
{
int *nPtr = NULL;
f1(nPtr); // passes 'NULL' to param 1 of f1.
// after the call, our 'nPtr' is still NULL
f2(&nPtr); // passes the *address* of our nPtr variable
// nPtr here should no-longer be null.
return 0;
}
---- EDIT: Regarding ownership of allocations ----
The ownership of pointers is a messy can of worms; the standard C library has a function strdup
which returns a pointer to a copy of a string. It is left to the programmer to understand that the pointer is allocated with malloc
and is expected to be released to the memory manager by a call to free
.
This approach becomes more onerous as the thing being pointed to becomes more complex. For example, if you get a directory structure, you might be expected to understand that each entry is an allocated pointer that you are responsible for releasing.
dir = getDirectory(dirName);
for (i = 0; i < numEntries; i++) {
printf("%d: %s\n", i, dir[i]->de_name);
free(dir[i]);
}
free(dir);
If this was a file operation you'd be a little surprised if the library didn't provide a close
function and made you tear down the file descriptor on your own.
A lot of modern libraries tend to assume responsibility for their resources and provide matching acquire and release functions, e.g. to open and close a MySQL connection:
// allocate a MySQL descriptor and initialize it.
MYSQL* conn = mysql_init(NULL);
DoStuffWithDBConnection(conn);
// release everything.
mysql_close(conn);
LibEvent has, e.g.
bufferevent_new();
to allocate an event buffer and
bufferevent_free();
to release it, even though what it actually does is little more than malloc() and free(), but by having you call these functions, they provide a well-defined and clear API which assumes responsibility for knowing such things.
This is the basis for the concept known as "RAII" in C++
Upvotes: 0
Reputation: 129
By your description I'd suggest declaring x in your main function as a local variable (allocated from the stack) which you then pass by reference to your helper functions and return it from your main function by value.
int main()
{
int x; //local variable
helper(&x); //passed by reference
return x; //returned by value
}
Inside your helper you can modify the variable by dereferencing it and assigning whatever value needed:
void helper(int * x)
{
*x = ...; //change value of x
}
The alternative is declaring a pointer to x (which gets allocated from the heap) passing it to your helper functions and free-ing it when you have no use for it anymore. But this route requires more careful consideration and is error-prone.
Upvotes: 1
Reputation: 155
The variable x
will exist while the block in which it was declared is executed, even during helper execution, and giving a pointer to the helpers allows them to change its value. If I understand your problem right, you shouldn't need dynamic memory allocation. The following code returns 4 from mainFunction
:
void plus_one(unsigned short* x)
{
*x = *x + 1;
}
unsigned short mainFunction(void)
{
unsigned short x = 0;
plus_one(&x);
plus_one(&x);
plus_one(&x);
plus_one(&x);
return x;
}
Upvotes: 1