user3084006
user3084006

Reputation: 5574

Pandas calculating percentage in data summary

Lets say I have a dataframe

df=pd.DataFrame({'Location': [ 'Ala', 'SS', 'Ala', 'Ala', 'SS', 'Ala', 'SS', 'TXE', 'TXE', 'TXE'],
                 'Bid': ['E','N','E','N','N','E', 'E',np.nan,np.nan,'A']})

Where S is sealed bids, N is people who did not bid, Nan is not present, and O is open bid.

I want to do a calculate the percentage of bidders where the equation would be (E+A)/(E+A+N). Is the best way to do a pivot table then implement the equation?

df=pd.DataFrame({'Location': [ 'Ala', 'SS', 'Ala', 'Ala', 'SS', 'Ala', 'SS', 'TXE', 'TXE', 'TXE'],
                 'Bid': ['E','N','E','N','N','E', 'E',np.nan,np.nan,'A']})


pt = df.pivot_table(rows='Location', cols='Bid', aggfunc='size', fill_value=0)

pt['Percentage']=(pt.A + pt.E)/(pt.A+pt.E+pt.N)
print (pt)

>>> 
Bid       A  E  N  Percentage
Location                     
Ala       0  3  1    0.750000
SS        0  1  2    0.333333
TXE       1  0  0    1.000000

[3 rows x 4 columns]

Is this the best way to calculate percentage or is there a better way than pivot tables?

Upvotes: 0

Views: 8138

Answers (2)

jmz
jmz

Reputation: 4328

Perhaps this isn't general enough but you can get the percentages with

counts = df3['Bid'].value_counts(normalize=True)

Then finding (E+A) as a percentage of all bids is as simple as

counts.E + counts.A

If you don't want to include NaN bids in the percentage calculation then

counts = df3['Bid'].dropna().value_counts(normalize=True)

and, if there are other bid types you need to exclude

all_allowable = df3['Bid'].isin(['E', 'A', 'N'])
counts = df3[all_allowable]['Bid'].value_counts(normalize=True)

To split by location

all_allowable = df3['Bid'].isin(['E', 'A', 'N'])    
df3[all_allowable].groupby('Location')['Bid'].value_counts(normalize=True)

Upvotes: 8

LondonRob
LondonRob

Reputation: 78803

Your answer looks pretty good to me. It's very readable, which is obviously important.

If you want an alternative, you could look at groupby, but, as I said, I think your own answer looks great:

>>> df=pd.DataFrame({'Location': [ 'Ala', 'SS', 'Ala', 'Ala', 'SS', 'Ala', 'SS', 'TXE', 'TXE', 'TXE'],
...                  'Bid': ['E','N','E','N','N','E', 'E',np.nan,np.nan,'A']})
>>> df = df.set_index('Location')
>>> ean = df.groupby(level='Location').count()
>>> ea = df[df != 'N'].groupby(level='Location').count()
>>> ea.astype(float) / ean
               Bid
Location          
Ala       0.750000
SS        0.333333
TXE       1.000000

Upvotes: 0

Related Questions