Reputation: 286
Is it possible to fit an A*sin(B*t+C) function with GSL or a similar library?
i want to get the A and C parameter of a sine wave present in 4096 samples (8bit) and can provide an good approximation of B.
A think that should be possible with GSLs non-linear multifit but I don’t understand the mathematical background with all that Jacobian matrix stuff...
Upvotes: 4
Views: 3667
Reputation: 286
Thank you alexandre, you helped me a lot!
Here is the code I'am using now:
typedef struct{
uint32 u32_n;
float64* pf64_y;
float64* pf64_sigma;
}ST_DATA;
int expb_f (const gsl_vector* x, void* p_data, gsl_vector* f)
{
ST_DATA* pst_data = (ST_DATA*)p_data;
uint32 u32_n = pst_data->u32_n;
float64* pf64_y = pst_data->pf64_y;
float64* pf64_sigma = pst_data->pf64_sigma;
float64 A = /* x[0] */ gsl_vector_get (x, 0);
float64 B = /* x[1] */ gsl_vector_get (x, 1);
float64 C = /* x[2] */ gsl_vector_get (x, 2);
float64 Yi,Fi;
uint32 i;
for (i=0; i<u32_n; i++)
{
Yi = A * sin(B*i + C);
Fi = (Yi - pf64_y[i])/pf64_sigma[i];
/* f[i] = Fi; */ gsl_vector_set(f,i,Fi);
}
return GSL_SUCCESS;
}
int expb_df (const gsl_vector* x, void* p_data, gsl_matrix* J)
{
ST_DATA* pst_data = (ST_DATA*)p_data;
uint32 u32_n = pst_data->u32_n;
float64* pf64_y = pst_data->pf64_y;
float64* pf64_sigma = pst_data->pf64_sigma;
float64 A = /* x[0] */ gsl_vector_get (x, 0);
float64 B = /* x[1] */ gsl_vector_get (x, 1);
float64 C = /* x[2] */ gsl_vector_get (x, 2);
float64 Yi;
uint32 i;
for (i=0; i<u32_n; i++)
{
/* J[i][0] = sin(B*i+C); */gsl_matrix_set (J, i, 0, sin(B*i+C) );
/* J[i][1] = A*cos(B*i+C)*i; */gsl_matrix_set (J, i, 1, A*cos(B*i+C)*i);
/* J[i][2] = A*cos(B*i+C); */gsl_matrix_set (J, i, 2, A*cos(B*i+C) );
}
return GSL_SUCCESS;
}
int expb_fdf (const gsl_vector * x, void *data, gsl_vector * f, gsl_matrix * J)
{
expb_f(x, data, f);
expb_df(x, data, J);
return GSL_SUCCESS;
}
Upvotes: 0
Reputation: 582
Yes,
You have probably read this: http://www.gnu.org/software/gsl/manual/html_node/Overview-of-Nonlinear-Least_002dSquares-Fitting.html#Overview-of-Nonlinear-Least_002dSquares-Fitting
What is required from you is to provide two functions
the objective:
`
int sine_f (const gsl_vector * x, void *data,
gsl_vector * f){
...
for(...){
...
double Yi = A * sin(B*t +C);
gsl_vector_set (f, i, (Yi - y[i])/sigma[i]);
}
...
}
and then the derivative of the objective with respect to the parameters
int
sine_df (const gsl_vector * x, void *data,
gsl_matrix * J)
//the derivatives of Asin(Bt +C) wrt A,B,C for each t
This is straight from http://www.gnu.org/software/gsl/manual/html_node/Example-programs-for-Nonlinear-Least_002dSquares-Fitting.html#Example-programs-for-Nonlinear-Least_002dSquares-Fitting
So the Jacobian is just a 3xN matrix, where N is the number of data points For example J(0,3) = sin(B*t_3 + C)
if A,B,C correspond to x[0],x[1],x[2]
And J(1,5) = A*t_5*cos(B*t_5 + C) This is the derivative wrt. B
Upvotes: 2