Reputation: 63
I've got 2 CSV files.
First, I want to take 1 column and make a list.
Then I'd like to create a dictionary from another CSV, but only with rows where the value from one column matches a value already in the list created earlier on.
Here's the code so far:
#modified from: http://bit.ly/1iOS7Gu
import pandas
colnames = ['Gene > DB identifier', 'Gene_Symbol', 'Gene > Organism > Name', 'Gene > Homologues > Homologue > DB identifier', 'Homo_Symbol', 'Gene > Homologues > Homologue > Organism > Name', 'Gene > Homologues > Data', 'Sets > Name']
data = pandas.read_csv(raw_input("Enter csv file (including path)"), names=colnames)
filter = set(data.Homo_Symbol.values)
print set(data.Homo_Symbol.values)
#new_dict = raw_input("Enter Dictionary Name")
#source: http://bit.ly/1iOS0e3
import csv
new_dict = {}
with open('C:\Users\Chris\Desktop\gwascatalog.csv', 'rb') as f:
reader = csv.reader(f)
for row in reader:
if row[0] in filter:
if row[0] in new_dict:
new_dict[row[0]].append(row[1:])
else:
new_dict[row[0]] = [row[1:]]
print new_dict
Here are the 2 sample data files: http://bit.ly/1hlpyTH
Any ideas? Thanks in advance.
Upvotes: 0
Views: 610
Reputation: 22561
You can use collections.defaultdict to get rid of check for list in dict:
from collections import defaultdict
new_dict = defaultdict(list)
#...
for row in reader:
if row[0] in filter:
new_dict[row[0]].append(row[1:])
Upvotes: 1