Reputation: 63
This is probably a very simple question that has been asked already but.. I have a data frame that I have constructed from a CSV file generated in excel. The observations are not homogeneously sampled, i.e they are for "On Peak" times of electricity usage. That means they exclude different days each year. I have 20 years of data (1993-2012) and am running both non Robust and Robust LOESS to extract seasonal and linear trends. After the decomposition has been done, I want to focus only on the observations from June through September.
How can I create a new data frame of just those results?
Sorry about the formatting, too.
Date MaxLoad TMAX
1 1993-01-02 2321 118.6667
2 1993-01-04 2692 148.0000
3 1993-01-05 2539 176.0000
4 1993-01-06 2545 172.3333
5 1993-01-07 2517 177.6667
6 1993-01-08 2438 157.3333
7 1993-01-09 2302 152.0000
8 1993-01-11 2553 144.3333
9 1993-01-12 2666 146.3333
10 1993-01-13 2472 177.6667
Upvotes: 6
Views: 12672
Reputation: 162321
As Joran notes, you don't need anything other than base R:
## Reproducible data
df <-
data.frame(Date = seq(as.Date("2009-03-15"), as.Date("2011-03-15"), by="month"),
MaxLoad = floor(runif(25,2000,3000)), TMAX=runif(25,100,200))
## One option
df[months(df$Date) %in% month.name[6:9],]
# Date MaxLoad TMAX
# 4 2009-06-15 2160 188.4607
# 5 2009-07-15 2151 164.3946
# 6 2009-08-15 2694 110.4399
# 7 2009-09-15 2460 150.4076
# 16 2010-06-15 2638 178.8341
# 17 2010-07-15 2246 131.3283
# 18 2010-08-15 2483 112.2635
# 19 2010-09-15 2174 160.9724
## Another option: strftime() will be more _generally_ useful than months()
df[as.numeric(strftime(df$Date, "%m")) %in% 6:9,]
Upvotes: 10