Reputation: 133
i have implemented the quick select algorithm.
i have the problem that my algorithm ends up in a endless loop, when i use duplicates in the array...
can you help me to get it work?
the expected complexity is O(n) with worst case O(n^2)?
#include <iostream>
#include <vector>
#include <algorithm>
#include <ctime>
using namespace std;
int rand_partition(vector<int> &a, int left, int right) {
int pivotIndex = left + (rand() % (right - left));
//int m = left + (right - left) / 2; //... to test the algo...no rand at this point
int pivot = a[pivotIndex];
int i = left;
int j = right;
do {
while (a[i] < pivot) i++; // find left element > pivot
while (a[j] > pivot) j--; // find right element < pivot
// if i and j not already overlapped, we can swap
if (i < j) {
swap(a[i], a[j]);
}
} while (i < j);
return i;
}
// Returns the n-th smallest element of list within left..right inclusive (i.e. n is zero-based).
int quick_select(vector<int> &a, int left, int right, int n) {
if (left == right) { // If the list contains only one element
return a[left]; // Return that element
}
int pivotIndex = rand_partition(a, left, right);
// The pivot is in its final sorted position
if (n == pivotIndex) {
return a[n];
}
else if (n < pivotIndex) {
return quick_select(a, left, pivotIndex - 1, n);
}
else {
return quick_select(a, pivotIndex + 1, right, n);
}
}
int main() {
vector<int> vec= {1, 0, 3, 5, 0, 8, 6, 0, 9, 0};
cout << quick_select(vec, 0, vec.size() - 1, 5) << endl;
return 0;
}
Upvotes: 4
Views: 3080
Reputation: 7990
There are several problems in your code.
quick_select()
, you are comparing pivotIndex
with n
directly. Since the left
isn't always 0, you should compare n
with the length of left part which is equal to pivotIndex - left + 1
.n > length
, you just callquick_select(a, pivotIndex + 1, right, n)
recursively, at this time, it means the N-th element of the whole vector lies in the right part of it, it's the (N - (pivotIndex - left + 1) )-th element of the right part of the vector. The code should be quick_select(a, pivotIndex + 1, right, n - (pivotIndex - left + 1) )
(n is ONE-based).A[p...j] ≤ A[j+1...r]
, but we want A[p...j-1] ≤ A[j] ≤ A[j+1...r]
in the quick_select()
. So I use the rand_partition()
based on Lomuto's partitioning algorithm I wrote on another postHere is the fixed quick_select()
which returns the N-th(note that n is ONE-based) smallest element of the vector:
int quick_select(vector<int> &a, int left, int right, int n)
{
if ( left == right )
return a[left];
int pivotIndex = partition(a, left, right);
int length = pivotIndex - left + 1;
if ( length == n)
return a[pivotIndex];
else if ( n < length )
return quick_select(a, left, pivotIndex - 1, n);
else
return quick_select(a, pivotIndex + 1, right, n - length);
}
and this is the rand_partition()
:
int rand_partition(vector<int> &arr, int start, int end)
{
int pivot_index = start + rand() % (end - start + 1);
int pivot = arr[pivot_index];
swap(arr[pivot_index], arr[end]); // swap random pivot to end.
pivot_index = end;
int i = start -1;
for(int j = start; j <= end - 1; j++)
{
if(arr[j] <= pivot)
{
i++;
swap(arr[i], arr[j]);
}
}
swap(arr[i + 1], arr[pivot_index]); // swap back the pivot
return i + 1;
}
Call srand()
first to initialize random number generator so that you can get random-like numbers when calling rand()
.
Driver program to test above functions:
int main()
{
int A1[] = {1, 0, 3, 5, 0, 8, 6, 0, 9, 0};
vector<int> a(A1, A1 + 10);
cout << "6st order element " << quick_select(a, 0, 9, 6) << endl;
vector<int> b(A1, A1 + 10); // note that the vector is modified by quick_select()
cout << "7nd order element " << quick_select(b, 0, 9, 7) << endl;
vector<int> c(A1, A1 + 10);
cout << "8rd order element " << quick_select(c, 0, 9, 8) << endl;
vector<int> d(A1, A1 + 10);
cout << "9th order element " << quick_select(d, 0, 9, 9) << endl;
vector<int> e(A1, A1 + 10);
cout << "10th order element " << quick_select(e, 0, 9, 10) << endl;
}
Upvotes: 2