Reputation: 6050
I am trying to use some ranking data in a logistic regression. I want to use machine learning to make a simple classifier as to whether a webpage is "good" or not. It's just a learning exercise so I don't expect great results; just hoping to learn the "process" and coding techniques.
I have put my data in a .csv as follows :
URL WebsiteText AlexaRank GooglePageRank
In my Test CSV we have :
URL WebsiteText AlexaRank GooglePageRank Label
Label is a binary classification indicating "good" with 1 or "bad" with 0.
I currently have my LR running using only the website text; which I run a TF-IDF on.
I have a two questions which I need help with:
How can I normalize my ranking data for AlexaRank? I have a set of
10,000 webpages, for which I have the Alexa rank of all of them;
however they aren't ranked 1-10,000
. They are ranked out of the
entire Internet, so while http://www.google.com
may be ranked #1
,
http://www.notasite.com
may be ranked #83904803289480
. How do I
normalize this in Scikit learn in order to get the best possible
results from my data?
I am running my Logistic Regression in this way; I am nearly sure I have done this incorrectly. I am trying to do the TF-IDF on the website text, then add the two other relevant columns and fit the Logistic Regression. I'd appreciate if someone could quickly verify that I am taking in the three columns I want to use in my LR correctly.
loadData = lambda f: np.genfromtxt(open(f,'r'), delimiter=' ')
print "loading data.."
traindata = list(np.array(p.read_table('train.tsv'))[:,2])#Reading WebsiteText column for TF-IDF.
testdata = list(np.array(p.read_table('test.tsv'))[:,2])
y = np.array(p.read_table('train.tsv'))[:,-1] #reading label
tfv = TfidfVectorizer(min_df=3, max_features=None, strip_accents='unicode', analyzer='word',
token_pattern=r'\w{1,}', ngram_range=(1, 2), use_idf=1, smooth_idf=1,sublinear_tf=1)
rd = lm.LogisticRegression(penalty='l2', dual=True, tol=0.0001, C=1, fit_intercept=True, intercept_scaling=1.0, class_weight=None, random_state=None)
X_all = traindata + testdata
lentrain = len(traindata)
print "fitting pipeline"
tfv.fit(X_all)
print "transforming data"
X_all = tfv.transform(X_all)
X = X_all[:lentrain]
X_test = X_all[lentrain:]
print "20 Fold CV Score: ", np.mean(cross_validation.cross_val_score(rd, X, y, cv=20, scoring='roc_auc'))
#Add Two Integer Columns
AlexaAndGoogleTrainData = list(np.array(p.read_table('train.tsv'))[2:,3])#Not sure if I am doing this correctly. Expecting it to contain AlexaRank and GooglePageRank columns.
AlexaAndGoogleTestData = list(np.array(p.read_table('test.tsv'))[2:,3])
AllAlexaAndGoogleInfo = AlexaAndGoogleTestData + AlexaAndGoogleTrainData
#Add two columns to X.
X = np.append(X, AllAlexaAndGoogleInfo, 1) #Think I have done this incorrectly.
print "training on full data"
rd.fit(X,y)
pred = rd.predict_proba(X_test)[:,1]
testfile = p.read_csv('test.tsv', sep="\t", na_values=['?'], index_col=1)
pred_df = p.DataFrame(pred, index=testfile.index, columns=['label'])
pred_df.to_csv('benchmark.csv')
print "submission file created.."`
Upvotes: 5
Views: 3474
Reputation: 8203
Regarding normalizing the numeric ranks either scikit StandardScaler
or a logarithmic transform (or both) should work well enough.
For building up a working pipeline, I find my sanity greatly benefits from using the Pandas package and the sklearn.pipeline
utilities. Here is a simple script that should do what you need.
First a couple of utlitlty classes I always seem to need. It would be nice to have something like these in sklearn.pipeline
or sklearn.utilities
.
from sklearn import base
class Columns(base.TransformerMixin, base.BaseEstimator):
def __init__(self, columns):
super(Columns, self).__init__()
self.columns_ = columns
def fit(self, *args, **kwargs):
return self
def transform(self, X, *args, **kwargs):
return X[self.columns_]
class Text(base.TransformerMixin, base.BaseEstimator):
def fit(self, *args, **kwargs):
return self
def transform(self, X, *args, **kwargs):
return (X.apply("\t".join, axis=1, raw=False))
Now set up the pipeline.
I used the SGDClassifier
implementation of logistic regression since it tends to be more eficcient for high dimensional data like text classification also I usually find that hinge loss usually gives better results than logistic regression anyway.
from sklearn import linear_model as lin
from sklearn import metrics
from sklearn.feature_extraction import text as txt
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import StandardScaler
from sklearn import preprocessing as prep
import numpy as np
from pandas.io import parsers
import pandas as pd
pipe = Pipeline([
('feat', FeatureUnion([
('txt', Pipeline([
('txtcols', Columns(["WebsiteText"])),
('totxt', Text()),
('vect', txt.TfidfVectorizer()),
])),
('num', Pipeline([
('numcols', Columns(["AlexaRank", "GooglePageRank"])),
('scale', prep.StandardScaler()),
])),
])),
('clf', lin.SGDClassifier(loss="log")),
])
Next train the model:
train=parsers.read_csv("train.csv")
pipe.fit(train, train.Label)
Finally evaluate on test data:
test=parsers.read_csv("test.csv")
tstlbl=np.array(test.Label)
print pipe.score(test, tstlbl)
pred = pipe.predict(test)
print metrics.confusion_matrix(tstlbl, pred)
print metrics.classification_report(tstlbl, pred)
print metrics.f1_score(tstlbl, pred)
prob = pipe.decision_function(test)
print metrics.roc_auc_score(tstlbl, prob)
print metrics.average_precision_score(tstlbl, prob)
You will probably not get very good results with everything using default setting like this, but it should give you a working baseline to work from. I can suggest some parameter settings that usually work for me if you like.
Upvotes: 2
Reputation: 5098
I guess sklearn.preprocessing.StandardScaler
would be the first thing you want to try. StandardScaler transforms all of your features into Mean-0-Std-1 features.
AlexaRank
will be guaranteed to be spread around 0 and bounded. (Yes, even massive AlexaRank
values like 83904803289480
are transformed to small floating point numbers). Of course, the results will not be integers between 1
and 10000
but they will maintain same order as the original ranks. And in this case, keeping the rank bounded and normalized will help solve your second problem like follows.83904803289480
. In that case, the Alexa Rank variable dominates your LR fit and a small change in TF-IDF value has almost no effect on the LR fit. Now one might think that the coefficient should be able to adjust to small/large values to account for differences between these features. Not in this case --- It's not only the magnitude of variables that matter but also their range. Alexa Rank definitely has a large range and should definitely dominate your LR fit in this case. Therefore, I guess normalizing all variables using StandardScaler to adjust their range will improve the fit. Here is how you can scale the X
matrix.
sc = proprocessing.StandardScaler().fit(X)
X = sc.transform(X)
Don't forget to use same scaler to transform X_test
.
X_test = sc.transform(X_test)
Now you can use the fitting procedure etc.
rd.fit(X, y)
re.predict_proba(X_test)
Check this out for more on sklearn preprocessing: http://scikit-learn.org/stable/modules/preprocessing.html
Edit: Parsing and column merging part can be easily done using pandas, i.e., there is no need to convert the matrices into list and then append them. Moreover, pandas dataframes can be directly indexed by their column names.
AlexaAndGoogleTrainData = p.read_table('train.tsv', header=0)[["AlexaRank", "GooglePageRank"]]
AlexaAndGoogleTestData = p.read_table('test.tsv', header=0)[["AlexaRank", "GooglePageRank"]]
AllAlexaAndGoogleInfo = AlexaAndGoogleTestData.append(AlexaAndGoogleTrainData)
Note that we are passing header=0
argument to read_table to maintain original header names from tsv file. And also note how we can index using entire set of columns. Finally, you can stack this new matrix with X
using numpy.hstack
.
X = np.hstack((X, AllAlexaAndGoogleInfo))
hstack
horizontally combined two multi-dimensional array-like structures provided their lengths are same.
Upvotes: 5