Reputation: 560
I am new to Hadoop and am stumped by something:
What I'm trying to do is take in a list of text-entries in files and have an initial mapper do some crunching on them and then output a customized object to be aggregated by the reducer.
I put together a framework using all text values OK--but when I try to change to using our own objects, I get a NPE (shown below)
Here is the Driver's run():
JobConf conf = new JobConf( getConf(), VectorConPreprocessor.class );
conf.setJobName( JOB_NAME + " - " + JOB_ISODATE );
m_log.info("JOB NAME: " + conf.getJobName() );
// Probably need to change this to be a chain-mapper later on . . . .
conf.setInputFormat( TextInputFormat.class ); // reading text from files
conf.setMapperClass( MapMVandSamples.class );
conf.setMapOutputValueClass( SparsenessFilter.class );
//conf.setCombinerClass( CombineSparsenessTrackers.class ); // not using combiner, because ALL nodes must be gathered before reduction
conf.setReducerClass( ReduceSparsenessTrackers.class ); // not sure reducing is required here . . . .
conf.setOutputKeyClass( Text.class ); // output key will be the SHA2
conf.setOutputValueClass( Text.class ); // output value will be the FeatureVectorMap
conf.setOutputFormat( SequenceFileOutputFormat.class ); // binary object writer
And here is the Mapper:
public class MapMVandSamples extends MapReduceBase implements Mapper<LongWritable, Text, Text, SparsenessFilter>
{
public static final String DELIM = ":";
protected static Logger m_log = Logger.getLogger( MapMVandSamples.class );
// In this case we're reading a line of text at a time from the file
// We don't really care about the SHA256 for now, just create a SparsenessFilter
// for each entry. The reducer will aggregate them later.
@Override
public void map( LongWritable bytePosition, Text lineOfText, OutputCollector<Text, SparsenessFilter> outputCollector, Reporter reporter ) throws IOException
{
String[] data = lineOfText.toString().split( DELIM, 2 );
String sha256 = data[0];
String json = data[1];
// create a SparsenessFilter for this record
SparsenessFilter sf = new SparsenessFilter();
// crunching goes here
outputCollector.collect( new Text("AllOneForNow"), sf );
}
}
And, finally, the error:
14/03/05 21:56:56 INFO mapreduce.Job: Task Id : attempt_1394084907462_0002_m_000000_1, Status : FAILED
Error: java.lang.NullPointerException
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.init(MapTask.java:989)
at org.apache.hadoop.mapred.MapTask.createSortingCollector(MapTask.java:390)
at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:418)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:162)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1491)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:157)
Any ideas? Do I need to implement an interface on our SparsenessFilter to be able to have the Mapper's OutputCollector handle it?
Thanks!
Upvotes: 2
Views: 2680
Reputation: 1810
All Custom Keys and values should implement WritableComparable interface.
You need to implement readFields(DataInput in) & write(DataOutput out) & also compareTo.
Upvotes: 2
Reputation: 3324
Hadoop Text
and IntWritable
both implement these interfaces:
I didn't find any document explicitly about what a Key or Value class needs to implement, but maybe Comparable
interfaces are related to being a Key
class and Writable
interface is related to being a Value
.
Upvotes: 1