Reputation: 2836
given a matrix like this one:
1 2 3
4 5 6
7 8 9
which can be represented as a 2 dimensional array:
arr = [[1,2,3], [4,5,6], [7,8,9]];
rotate the array so that it is read diagonally at a 45 degree angle and prints out this:
1
4 2
7 5 3
8 6
9
I spent a while coming up with a solution that I don't even fully intuitively understand, but it works, at least for 3x3 and 4x4 matrices. I was hoping to see more logical and clean implementations.
Here's my solution:
arr = [[1,2,3,0],[4,5,6,0],[7,8,9,0], [0,0,0,0]];
// arr[i][j];
transform(arr);
function transform(ar) {
// the number of lines in our diagonal matrix will always be rows + columns - 1
var lines = ar.length + ar[0].length - 1;
// the length of the longest line...
var maxLen = ~~(ar.length + ar[0].length)/2;
var start = 1;
var lengths = [];
// this for loop creates an array of the lengths of each line, [1,2,3,2,1] in our case
for (i=0;i<lines; i++) {
lengths.push(start);
if (i+1 < maxLen) {
start++;
} else {
start--;
}
}
// after we make each line, we're going to append it to str
var str = "";
// for every line
for(j=0; j<lengths.length; j++) {
// make a new line
var line = "";
// i tried to do it all in one for loop but wasn't able to (idk if it's possible) so here we use a particular for loop while lengths of the lines are increasing
if (j < maxLen) {
// lengths[j] is equal to the elements in this line, so the for loop will run that many times and create that many elements
for(c=0; c<lengths[j]; c++) {
// if ar[r][c], the pattern here is that r increases along rows (as we add new lines), and decreases along columns. c stays the same as we add rows, and increases across columns
line += ar[lengths[j]-1-c][c] + " ";
// when we've added all the elements we need for this line, add it to str with a line break
if (c == lengths[j]-1) {
line += "\n"; str += line;
}
}
} else {
// when we're headed down or decreasing the length of each line
for (r=0; r<lengths[j]; r++) {
// the pattern here tripped me up, and I had to introduce another changing variable j-maxLen (or the distance from the center). r stays the same as rows increase and decreases across columns. c increases along rows and decreases across columns
line += ar[lengths[j]-r+j-maxLen][j-maxLen+r +1] + " ";
// that's all our elements, add the line to str;
if (r == lengths[j] -1) {
line += "\n"; str += line;
}
}
}
}
console.log(str);
}
Upvotes: 3
Views: 2905
Reputation: 20766
The main idea is to partition the original matrix indexed by (i,j)
according to i+j
.
This is expressed in the code snippet rotated[i+j].push(arr[i][j])
below:
arr = [[1,2,3], [4,5,6], [7,8,9]];
var summax = arr.length + arr[0].length - 1; // max index of diagonal matrix
var rotated = []; // initialize to an empty matrix of the right size
for( var i=0 ; i<summax ; ++i ) rotated.push([]);
// Fill it up by partitioning the original matrix.
for( var j=0 ; j<arr[0].length ; ++j )
for( var i=0 ; i<arr.length ; ++i ) rotated[i+j].push(arr[i][j]);
// Print it out.
for( var i=0 ; i<summax ; ++i ) console.log(rotated[i].join(' '))
Output:
1
4 2
7 5 3
8 6
9
Produces same output:
puts arr.transpose.flatten.group_by.with_index { |_,k|
k.divmod(arr.size).inject(:+) }.values.map { |a| a.join ' ' }
Upvotes: 5
Reputation: 5105
You could use the diagonal enumeration from Cantor, see Cantor pairing function, which is used to show that the set N x N has the same cardinality as the set N (i.e. natural numbers can be mapped one to one to pairs of natural numbers) and combine it with a condition that one skips those values which lie outside the rectangular matrix.
The Cantor pairing function pi takes two natural numbers i and j, i.e. the pair (i, j) and maps it to a natural number k
pi : |N x |N -> |N : pi(i, j) = k
Use the reverse mapping to get this
pi^-1 : |N -> |N x |N : pi^-1(k) = (i, j)
i.e. one enumerates the cells of the "infinite Matrix" N x N diagonally. So counting up k and applying the inverse function will give the proper pair of indices (i, j) for printing the rotated matrix.
Example:
0->(0, 0) 2->(0, 1) | 5->(0, 2) 9->(0, 3) . .
1->(1, 0) 4->(1, 1) | 8->(1, 2)
3->(2, 0) 7->(2, 2) |
---------------------+ <- clipping for 3 x 2 matrix
6->(3, 0)
.
.
For input k these formulas give the pair (i, j):
w = floor((sqrt(8*k + 1) - 1) / 2)
t = (w*w + w) / 2
j = k - t
i = w - j
See the link given above for a derivation.
Given a m x n matrix A: i from [0, .., m - 1] enumerates the rows, and j from [0, .., n - 1] enumerates the columns
Note: I tried this out in the MongoDB shell, using its print() function.
Helper functions
function sprint(k) {
var s = '' + k;
while (s.length < 3) {
s = ' ' + s;
}
return s;
}
function print_matrix(a) {
var m = a.row_size;
var n = a.column_size;
for (var i = 0; i < m; i++) {
var s = '';
for (var j = 0; j < n; j++) {
s += sprint(a.value[i][j]);
}
print(s);
}
}
The Inverse of the Cantor pairing function
// inverse of the Cantor pair function
function pi_inv(k) {
var w = Math.floor((Math.sqrt(8*k + 1) - 1) / 2);
var t = (w*w + w) /2;
var j = k - t;
var i = w -j;
return [i, j];
}
The algorithm
// "rotate" matrix a
function rot(a) {
var m = a.row_size;
var n = a.column_size;
var i_max = m - 1;
var j_max = n - 1;
var k = 0;
var s = '';
do {
var ij = pi_inv(k);
var i = ij[0];
var j = ij[1];
if ((i <= i_max) && (j <= j_max)) {
s += sprint(a.value[i][j]);
}
if (i == 0) {
print(s);
s = '';
}
k += 1
} while ((i != i_max) || (j != j_max));
print(s);
}
Example usage
// example
var a = {
row_size: 4,
column_size: 4,
value: [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16] ]
};
print('in:');
print_matrix(a);
print('out:');
rot(a);
Output for 4x4 Matrix
in:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
out:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
This method works for any m x n Matrix, e.g. 4 x 5:
in:
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
out:
1
6 2
11 7 3
16 12 8 4
17 13 9 5
18 14 10
19 15
20
or 4 x 3:
in:
1 2 3
4 5 6
7 8 9
10 11 12
out:
1
4 2
7 5 3
10 8 6
11 9
12
Upvotes: 1
Reputation: 63580
Here's my approach:
var origMatrix = [[1,2,3,4,5], [4,5,6,7,8], [9,10,11,12,13], [14,15,16,17,18], [19,20,21,22,23]];
var maxSize = origMatrix.length;//Presuming all internal are equal!
var rotatedMatrix = [];
var internalArray;
var keyX,keyY,keyArray;
for(var y=0;y<((maxSize * 2)-1);y++){
internalArray = [];
for(var x=0;x<maxSize;x++){
keyX = x;
keyY = y - x;
if(keyY > -1){
keyArray = origMatrix[keyY];
if(typeof(keyArray) != 'undefined' && typeof(keyArray[keyX]) != 'undefined'){
internalArray.push(keyArray[keyX]);
}
}
}
rotatedMatrix.push(internalArray);
}
//log results
for(var i=0;i<rotatedMatrix.length;i++){
console.log(rotatedMatrix[i]);
}
Here's a JSFiddle of it in action (open the Console to see the results)
Upvotes: 1
Reputation: 208405
function transform(ar) {
var result = [],
i, x, y, row;
for (i = 0; i < ar.length; i++) {
row = [];
for (x = 0, y = i; y >= 0; x++, y--) {
row.push(ar[y][x]);
}
result.push(row);
}
for (i = 1; i < ar[0].length; i++) {
row = [];
for (x = i, y = ar[0].length - 1; x < ar[0].length; x++, y--) {
row.push(ar[y][x]);
}
result.push(row);
}
return result;
}
This returns the rotated array, to print it out as you go just replace each result.push(row);
line with console.log(row.join(" "));
.
Upvotes: 1