Reputation: 2705
I am importing a csv file
data = np.genfromtxt('na.csv', delimiter=",", dtype=[('latitude', 'f8'), ('longitude', 'f8'), ('location_id','i4'), ('location_name', 'S60'), ('location_group_id', 'i4'), ('location_group_name', 'S32')])
and considering rows by location_group_ids, one by one.
l_g_id_set = set()
l_g_id_set.update(data['location_group_id'])
for lgid in l_g_id_set:
# rows with location group id == lgid
group = data[data['location_group_id']==lgid]
So far, I only included latitude and longitude, which are two float values in the 0th and 1st position of the structured array from the csv file.
# structured array of latitude-longitude
latlon = group[list(group.dtype.names[:2])]
# convert the structured array into numpy array of floats
llarray = latlon.view((float, len(latlon.dtype.names)))
Now I want to include location_id, which is an integer value in the 2nd position of the array, to latlon
and llarray
. Rather than making this another structured array, I'd want llarray
a 2D float array with 3 columns for ease of calculation.
However when I try the following, only changing 2 to 3
# structured array of latitude-longitude
latlon = group[list(group.dtype.names[:3])]
# convert the structured array into numpy array of floats
llarray = latlon.view((float, len(latlon.dtype.names)))
it fails, throwing the following error.
llarray = latlon.view((float, len(latlon.dtype.names)))
ValueError: new type not compatible with array.
How can I fix this, and why is my fix failing?
Upvotes: 2
Views: 175
Reputation: 231550
This transformation works
dtype1=[('latitude', 'f8'), ('longitude', 'f8'), ('location_id', 'f4')]
data1=data[list(data.dtype.names[:3])].astype(dtype1)
But data1.view(float)
still gives the error
dtype2=[('latitude', 'f8'), ('longitude', 'f8'), ('location_id', 'f8')]
data2=data[list(data.dtype.names[:3])].astype(dtype2)
data2.view(float).reshape(-1,3)
data2.view((float,3)) # equivalent view
is ok.
Sample data:
In [211]: data[:3]
Out[211]:
array([(1.2, 2.3, 100, 'testing', 45, 'another'),
(1.2, 2.3, 200, 'testings', 45, 'xxx'),
(1.2, 2.3343, 300, 'testings', 45, 'xxx')],
dtype=[('latitude', '<f8'), ('longitude', '<f8'), ('location_id', '<i4'), ('location_name', 'S60'), ('location_group_id', '<i4'), ('location_group_name', 'S32')])
In [212]: data2[:3].view(np.float).reshape(-1,3)
Out[212]:
array([[ 1.2 , 2.3 , 100. ],
[ 1.2 , 2.3 , 200. ],
[ 1.2 , 2.3343, 300. ]])
In [230]: data2.view(np.float).reshape(-1,3).max(axis=0)
Out[230]: array([ 1.2 , 2.3343, 300. ])
In [234]: data2['longitude'].max()
Out[234]: 2.3342999999999998
In [236]: data2.view(np.float).reshape(-1,3)[:,1].max()
Out[236]: 2.3342999999999998
Upvotes: 1
Reputation: 1692
Hmm. Maybe you will have luck with this.
f_latlon = latlon.astype(np.float)
Upvotes: 0