Reputation: 101
I'm trying to make a program in Python which will generate the nth lucky number according to the lucky number sieve. I'm fairly new to Python so I don't know how to do all that much yet. So far I've figured out how to make a function which determines all lucky numbers below a specified number:
def lucky(number):
l = range(1, number + 1, 2)
i = 1
while i < len(l):
del l[l[i] - 1::l[i]]
i += 1
return l
Is there a way to modify this so that I can instead find the nth lucky number? I thought about increasing the specified number gradually until a list of the appropriate length to find the required lucky number was created, but that seems like a really inefficient way of doing it.
Edit: I came up with this, but is there a better way?
def lucky(number):
f = 2
n = number * f
while True:
l = range(1, n + 1, 2)
i = 1
while i < len(l):
del l[l[i] - 1::l[i]]
i += 1
if len(l) >= number:
return l[number - 1]
f += 1
n = number * f
Upvotes: 8
Views: 3236
Reputation: 87
n=input('enter n ')
a= list(xrange(1,n))
x=a[1]
for i in range(1,n):
del a[x-1::x]
x=a[i]
l=len(a)
if i==l-1:
break
print "lucky numbers till %d" % n
print a
lets do this with an example.lets print lucky numbers till 100
put n=100
firstly a=1,2,3,4,5....100
x=a[1]=2
del a[1::2] leaves
a=1,3,5,7....99
now l=50
and now x=3
then del a[2::3] leaving a =1,3,7,9,13,15,.....
and loop continues till i==l-1
Upvotes: -1
Reputation: 76805
I came up with this, but is there a better way?
Truth is, there will always be a better way, the remaining question being: is it good enough for your need?
One possible improvement would be to turn all this into a generator function. That way, you would only compute new values as they are consumed. I came up with this version, which I only validated up to about 60 terms:
import itertools
def _idx_after_removal(removed_indices, value):
for removed in removed_indices:
value -= value / removed
return value
def _should_be_excluded(removed_indices, value):
for j in range(len(removed_indices) - 1):
value_idx = _idx_after_removal(removed_indices[:j + 1], value)
if value_idx % removed_indices[j + 1] == 0:
return True
return False
def lucky():
yield 1
removed_indices = [2]
for i in itertools.count(3, 2):
if not _should_be_excluded(removed_indices, i):
yield i
removed_indices.append(i)
removed_indices = list(set(removed_indices))
removed_indices.sort()
If you want to extract for example the 100th term from this generator, you can use itertools nth recipe:
def nth(iterable, n, default=None):
"Returns the nth item or a default value"
return next(itertools.islice(iterable, n, None), default)
print nth(lucky(), 100)
I hope this works, and there's without any doubt more room for code improvement (but as stated previously, there's always room for improvement!).
Upvotes: 4
Reputation: 23773
With numpy arrays, you can make use of boolean indexing, which may help. For example:
>>> a = numpy.arange(10)
>>> print a
[0 1 2 3 4 5 6 7 8 9]
>>> print a[a > 3]
[4 5 6 7 8 9]
>>> mask = np.array([True, False, True, False, True, False, True, False, True, False])
>>> print a[mask]
[0 2 4 6 8]
Here is a lucky number function using numpy arrays:
import numpy as np
class Didnt_Findit(Exception):
pass
def lucky(n):
'''Return the nth lucky number.
n --> int
returns int
'''
# initial seed
lucky_numbers = [1]
# how many numbers do you need to get to n?
candidates = np.arange(1, n*100, 2)
# use numpy array boolean indexing
next_lucky = candidates[candidates > lucky_numbers[-1]][0]
# accumulate lucky numbers till you have n of them
while next_lucky < candidates[-1]:
lucky_numbers.append(next_lucky)
#print lucky_numbers
if len(lucky_numbers) == n:
return lucky_numbers[-1]
mask_start = next_lucky - 1
mask_step = next_lucky
mask = np.array([True] * len(candidates))
mask[mask_start::mask_step] = False
#print mask
candidates = candidates[mask]
next_lucky = candidates[ candidates > lucky_numbers[-1]][0]
raise Didnt_Findit('n = ', n)
>>> print lucky(10)
33
>>> print lucky(50)
261
>>> print lucky(500)
3975
Checked mine and @icecrime's output for 10, 50 and 500 - they matched.
Yours is much faster than mine and scales better with n.
Upvotes: 0