Reputation: 11885
I Use Pandas 0.12.0. Say multi_df
is a Pandas dataframe with multiple index. And I have a (long) list of tuples (multiple indexes), named look_up_list
. I want to perform an operation if a tuple in look_up_list
is in multi_df
.
Below is my code. Is there a faster way to achieve this? In reality len(multi_df)
and len(look_up_list)
are quite large so I need to optimise this line: [multi_df.ix[idx]**2 for idx in look_up_list if idx in multi_df.index]
.
In particular, line_profiler tells me that the contidional check: if idx in multi_df.index
takes a long time.
import pandas as pd
df = pd.DataFrame({'id' : range(1,9),
'code' : ['one', 'one', 'two', 'three',
'two', 'three', 'one', 'two'],
'colour': ['black', 'white','white','white',
'black', 'black', 'white', 'white'],
'texture': ['soft', 'soft', 'hard','soft','hard',
'hard','hard','hard'],
'shape': ['round', 'triangular', 'triangular','triangular','square',
'triangular','round','triangular']
}, columns= ['id','code','colour', 'texture', 'shape'])
multi_df = df.set_index(['code','colour','texture','shape']).sort_index()['id']
# define the list of indices that I want to look up for in multi_df
look_up_list = [('two', 'white', 'hard', 'triangular'),('five', 'black', 'hard', 'square'),('four', 'black', 'hard', 'round') ]
# run a list comprehension
[multi_df.ix[idx]**2 for idx in look_up_list if idx in multi_df.index]
P.S: The actual operation in the list comprehension is not multi_df.ix[idx]**2
, but something like: a_slow_function(multi_df.ix[idx])
.
Upvotes: 1
Views: 1504
Reputation: 879371
Perhaps use multi_df.loc[look_up_list].dropna()
.
import pandas as pd
df = pd.DataFrame(
{'id': range(1, 9),
'code': ['one', 'one', 'two', 'three',
'two', 'three', 'one', 'two'],
'colour': ['black', 'white', 'white', 'white',
'black', 'black', 'white', 'white'],
'texture': ['soft', 'soft', 'hard', 'soft', 'hard',
'hard', 'hard', 'hard'],
'shape': ['round', 'triangular', 'triangular', 'triangular', 'square',
'triangular', 'round', 'triangular']
}, columns=['id', 'code', 'colour', 'texture', 'shape'])
multi_df = df.set_index(
['code', 'colour', 'texture', 'shape']).sort_index()['id']
# define the list of indices that I want to look up for in multi_df
look_up_list = [('two', 'white', 'hard', 'triangular'), (
'five', 'black', 'hard', 'square'), ('four', 'black', 'hard', 'round')]
subdf = multi_df.loc[look_up_list].dropna()
print(subdf ** 2)
yields
(two, white, hard, triangular) 9
(two, white, hard, triangular) 64
Name: id, dtype: float64
Note:
multi_df
as defined above is a Series, not a DataFrame. I don't
think that affects the solution though.IndexingError: Too many indexers
so I'm guessing (a little bit) at the intention of the code.Upvotes: 2