Reputation: 4762
Is there an easy way to get the lat
/lng
of the intersection points (if available) of two circles in Google Maps API V3? Or should I go with the hard way?
EDIT : In my problem, circles always have the same radius, in case that makes the solution easier.
Upvotes: 8
Views: 6119
Reputation: 19288
Yazanpro, sorry for the late response on this.
You may be interested in a concise variant of MBo's approach, which simplifies in two respects :
Here's the function :
function getIntersections(circleA, circleB) {
/*
* Find the points of intersection of two google maps circles or equal radius
* circleA: a google.maps.Circle object
* circleB: a google.maps.Circle object
* returns: null if
* the two radii are not equal
* the two circles are coincident
* the two circles don't intersect
* otherwise returns: array containing the two points of intersection of circleA and circleB
*/
var R, centerA, centerB, D, h, h_;
try {
R = circleA.getRadius();
centerA = circleA.getCenter();
centerB = circleB.getCenter();
if(R !== circleB.getRadius()) {
throw( new Error("Radii are not equal.") );
}
if(centerA.equals(centerB)) {
throw( new Error("Circle centres are coincident.") );
}
D = google.maps.geometry.spherical.computeDistanceBetween(centerA, centerB); //Distance between the two centres (in meters)
// Check that the two circles intersect
if(D > (2 * R)) {
throw( new Error("Circles do not intersect.") );
}
h = google.maps.geometry.spherical.computeHeading(centerA, centerB); //Heading from centre of circle A to centre of circle B. (in degrees)
h_ = Math.acos(D / 2 / R) * 180 / Math.PI; //Included angle between the intersections (for either of the two circles) (in degrees). This is trivial only because the two radii are equal.
//Return an array containing the two points of intersection as google.maps.latLng objects
return [
google.maps.geometry.spherical.computeOffset(centerA, R, h + h_),
google.maps.geometry.spherical.computeOffset(centerA, R, h - h_)
];
}
catch(e) {
console.error("getIntersections() :: " + e.message);
return null;
}
}
No disrespect to MBo by the way - it's an excellent answer.
Upvotes: 4
Reputation: 80187
Yes, for equal circles rather simple solution could be elaborated:
Let's first circle center is A point, second circle center is F, midpoint is C, and intersection points are B,D. ABC is right-angle spherical triangle with right angle C.
We want to find angle A - this is deviation angle from A-F direction. Spherical trigonometry (Napier's rules for right spherical triangles) gives us formula:
cos(A)= tg(AC) * ctg(AB)
where one symbol denote spherical angle, double symbols denote great circle arcs' angles (AB, AC). We can see that AB = circle radius (in radians, of course), AC = half-distance between A and F on the great circle arc.
To find AC (and other values) - I'll use code from this excellent page
var R = 6371; // km
var dLat = (lat2-lat1).toRad();
var dLon = (lon2-lon1).toRad();
var lat1 = lat1.toRad();
var lat2 = lat2.toRad();
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
and our
AC = c/2
If circle radius Rd is given is kilometers, then
AB = Rd / R = Rd / 6371
Now we can find angle
A = arccos(tg(AC) * ctg(AB))
Starting bearing (AF direction):
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1)*Math.sin(lat2) -
Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x);
Intersection points' bearings:
B_bearing = brng - A
D_bearing = brng + A
Intersection points' coordinates:
var latB = Math.asin( Math.sin(lat1)*Math.cos(Rd/R) +
Math.cos(lat1)*Math.sin(Rd/R)*Math.cos(B_bearing) );
var lonB = lon1.toRad() + Math.atan2(Math.sin(B_bearing)*Math.sin(Rd/R)*Math.cos(lat1),
Math.cos(Rd/R)-Math.sin(lat1)*Math.sin(lat2));
and the same for D_bearing
latB, lonB are in radians
Upvotes: 12
Reputation: 6247
The computation the "hard" way can be simplified for the case r1 = r2 =: r. We still first have to convert the circle centers P1,P2 from (lat,lng) to Cartesian coordinates (x,y,z).
var DEG2RAD = Math.PI/180;
function LatLng2Cartesian(lat_deg,lng_deg)
{
var lat_rad = lat_deg*DEG2RAD;
var lng_rad = lng_deg*DEG2RAD;
var cos_lat = Math.cos(lat_rad);
return {x: Math.cos(lng_rad)*cos_lat,
y: Math.sin(lng_rad)*cos_lat,
z: Math.sin(lat_rad)};
}
var P1 = LatLng2Cartesian(lat1, lng1);
var P2 = LatLng2Cartesian(lat2, lng2);
But the intersection line of the planes holding the circles can be computed more easily. Let d
be the distance of the actual circle center (in the plane) to the corresponding point P1 or P2 on the surface. A simple derivation shows (with R the earth's radius):
var R = 6371; // earth radius in km
var r = 100; // the direct distance (in km) of the given points to the intersections points
// if the value rs for the distance along the surface is known, it has to be converted:
// var r = 2*R*Math.sin(rs/(2*R*Math.PI));
var d = r*r/(2*R);
Now let S1 and S2 be the intersections points and S their mid-point. With s = |OS|
and t = |SS1| = |SS2|
(where O = (0,0,0) is the earth's center) we get from simple derivations:
var a = Math.acos(P1.x*P2.x + P1.y*P2.y + P1.z*P2.z); // the angle P1OP2
var s = (R-d)/Math.cos(a/2);
var t = Math.sqrt(R*R - s*s);
Now since r1 = r2
the points S, S1, S2 are in the mid-plane between P1 and P2. For v_s = OS
we get:
function vecLen(v)
{ return Math.sqrt(v.x*v.x + v.y*v.y + v.z*v.z); }
function vecScale(scale,v)
{ return {x: scale*v.x, y: scale*v.y, z: scale*v.z}; }
var v = {x: P1.x+P2.x, y: P1.y+P2.y, z:P1.z+P2.z}; // P1+P2 is in the middle of OP1 and OP2
var S = vecScale(s/vecLen(v), v);
function crossProd(v1,v2)
{
return {x: v1.y*v2.z - v1.z*v2.y,
y: v1.z*v2.x - v1.x*v2.z,
z: v1.x*v2.y - v1.y*v2.x};
}
var n = crossProd(P1,P2); // normal vector to plane OP1P2 = vector along S1S2
var SS1 = vecScale(t/vecLen(n),n);
var S1 = {x: S.x+SS1.x, y: S.y+SS1.y, z: S.z+SS1.z}; // S + SS1
var S2 = {x: S.x-SS1.x, y: S.y-SS2.y, z: S.z-SS1.z}; // S - SS1
Finally we have to convert back to (lat,lng):
function Cartesian2LatLng(P)
{
var P_xy = {x: P.x, y:P.y, z:0}
return {lat: Math.atan2(P.y,P.x)/DEG2RAD, lng: Math.atan2(P.z,vecLen(P_xy))/DEG2RAD};
}
var S1_latlng = Cartesian2LatLng(S1);
var S2_latlng = Cartesian2LatLng(S2);
Upvotes: 4