Reputation: 269
I encoded my categorical data using sklearn.OneHotEncoder
and fed them to a random forest classifier. Everything seems to work and I got my predicted output back.
Is there a way to reverse the encoding and convert my output back to its original state?
Upvotes: 26
Views: 40705
Reputation: 473
Since version 0.20 of scikit-learn, the active_features_
attribute of the OneHotEncoder
class has been deprecated, so I suggest to rely on the categories_
attribute instead.
The below function can help you recover the original data from a matrix that has been one-hot encoded:
def reverse_one_hot(X, y, encoder):
reversed_data = [{} for _ in range(len(y))]
all_categories = list(itertools.chain(*encoder.categories_))
category_names = ['category_{}'.format(i+1) for i in range(len(encoder.categories_))]
category_lengths = [len(encoder.categories_[i]) for i in range(len(encoder.categories_))]
for row_index, feature_index in zip(*X.nonzero()):
category_value = all_categories[feature_index]
category_name = get_category_name(feature_index, category_names, category_lengths)
reversed_data[row_index][category_name] = category_value
reversed_data[row_index]['target'] = y[row_index]
return reversed_data
def get_category_name(index, names, lengths):
counter = 0
for i in range(len(lengths)):
counter += lengths[i]
if index < counter:
return names[i]
raise ValueError('The index is higher than the number of categorical values')
To test it, I have created a small data set that includes the ratings that users have given to users
data = [
{'user_id': 'John', 'item_id': 'The Matrix', 'rating': 5},
{'user_id': 'John', 'item_id': 'Titanic', 'rating': 1},
{'user_id': 'John', 'item_id': 'Forrest Gump', 'rating': 2},
{'user_id': 'John', 'item_id': 'Wall-E', 'rating': 2},
{'user_id': 'Lucy', 'item_id': 'The Matrix', 'rating': 5},
{'user_id': 'Lucy', 'item_id': 'Titanic', 'rating': 1},
{'user_id': 'Lucy', 'item_id': 'Die Hard', 'rating': 5},
{'user_id': 'Lucy', 'item_id': 'Forrest Gump', 'rating': 2},
{'user_id': 'Lucy', 'item_id': 'Wall-E', 'rating': 2},
{'user_id': 'Eric', 'item_id': 'The Matrix', 'rating': 2},
{'user_id': 'Eric', 'item_id': 'Die Hard', 'rating': 3},
{'user_id': 'Eric', 'item_id': 'Forrest Gump', 'rating': 5},
{'user_id': 'Eric', 'item_id': 'Wall-E', 'rating': 4},
{'user_id': 'Diane', 'item_id': 'The Matrix', 'rating': 4},
{'user_id': 'Diane', 'item_id': 'Titanic', 'rating': 3},
{'user_id': 'Diane', 'item_id': 'Die Hard', 'rating': 5},
{'user_id': 'Diane', 'item_id': 'Forrest Gump', 'rating': 3},
]
data_frame = pandas.DataFrame(data)
data_frame = data_frame[['user_id', 'item_id', 'rating']]
ratings = data_frame['rating']
data_frame.drop(columns=['rating'], inplace=True)
If we are building a prediction model, we have to remember to delete the dependent variable (in this case the rating) from the DataFrame
before we encode it.
ratings = data_frame['rating']
data_frame.drop(columns=['rating'], inplace=True)
Then we proceed to do the encoding
ohc = OneHotEncoder()
encoded_data = ohc.fit_transform(data_frame)
print(encoded_data)
Which results in:
(0, 2) 1.0
(0, 6) 1.0
(1, 2) 1.0
(1, 7) 1.0
(2, 2) 1.0
(2, 5) 1.0
(3, 2) 1.0
(3, 8) 1.0
(4, 3) 1.0
(4, 6) 1.0
(5, 3) 1.0
(5, 7) 1.0
(6, 3) 1.0
(6, 4) 1.0
(7, 3) 1.0
(7, 5) 1.0
(8, 3) 1.0
(8, 8) 1.0
(9, 1) 1.0
(9, 6) 1.0
(10, 1) 1.0
(10, 4) 1.0
(11, 1) 1.0
(11, 5) 1.0
(12, 1) 1.0
(12, 8) 1.0
(13, 0) 1.0
(13, 6) 1.0
(14, 0) 1.0
(14, 7) 1.0
(15, 0) 1.0
(15, 4) 1.0
(16, 0) 1.0
(16, 5) 1.0
After encoding the we can reverse using the reverse_one_hot
function we defined above, like this:
reverse_data = reverse_one_hot(encoded_data, ratings, ohc)
print(pandas.DataFrame(reverse_data))
Which gives us:
category_1 category_2 target
0 John The Matrix 5
1 John Titanic 1
2 John Forrest Gump 2
3 John Wall-E 2
4 Lucy The Matrix 5
5 Lucy Titanic 1
6 Lucy Die Hard 5
7 Lucy Forrest Gump 2
8 Lucy Wall-E 2
9 Eric The Matrix 2
10 Eric Die Hard 3
11 Eric Forrest Gump 5
12 Eric Wall-E 4
13 Diane The Matrix 4
14 Diane Titanic 3
15 Diane Die Hard 5
16 Diane Forrest Gump 3
Upvotes: 6
Reputation: 121
Use numpy.argmax()
with axis = 1
.
Example:
ohe_encoded = np.array([[0, 0, 1], [0, 1, 0], [0, 1, 0], [1, 0, 0]])
ohe_encoded
> array([[0, 0, 1],
[0, 1, 0],
[0, 1, 0],
[1, 0, 0]])
np.argmax(ohe_encoded, axis = 1)
> array([2, 1, 1, 0], dtype=int64)
Upvotes: 10
Reputation: 421
Pandas approach :
To convert categorical variables to binary variables, pd.get_dummies
does that and to convert them back, you can find the index of the value where there is 1 using pd.Series.idxmax()
. Then you can map to a list(index in according to original data) or dictionary.
import pandas as pd
import numpy as np
col = np.random.randint(1,5,20)
df = pd.DataFrame({'A': col})
df.head()
A
0 2
1 2
2 1
3 1
4 3
df_dum = pd.get_dummies(df['A'])
df_dum.head()
1 2 3 4
0 0 1 0 0
1 0 1 0 0
2 1 0 0 0
3 1 0 0 0
4 0 0 1 0
df_n = df_dum.apply(lambda x: x.idxmax(), axis = 1)
df_n.head()
0 2
1 2
2 1
3 1
4 3
Upvotes: -1
Reputation: 136277
See https://stackoverflow.com/a/42874726/562769
import numpy as np
nb_classes = 6
data = [[2, 3, 4, 0]]
def indices_to_one_hot(data, nb_classes):
"""Convert an iterable of indices to one-hot encoded labels."""
targets = np.array(data).reshape(-1)
return np.eye(nb_classes)[targets]
def one_hot_to_indices(data):
indices = []
for el in data:
indices.append(list(el).index(1))
return indices
hot = indices_to_one_hot(orig_data, nb_classes)
indices = one_hot_to_indices(hot)
print(orig_data)
print(indices)
gives:
[[2, 3, 4, 0]]
[2, 3, 4, 0]
Upvotes: 1
Reputation: 2724
A good systematic way to figure this out is to start with some test data and work through the sklearn.OneHotEncoder
source with it. If you don't much care about how it works and simply want a quick answer, skip to the bottom.
X = np.array([
[3, 10, 15, 33, 54, 55, 78, 79, 80, 99],
[5, 1, 3, 7, 8, 12, 15, 19, 20, 8]
]).T
Lines 1763-1786 determine the n_values_
parameter. This will be determined automatically if you set n_values='auto'
(the default). Alternatively you can specify a maximum value for all features (int) or a maximum value per feature (array). Let's assume that we're using the default. So the following lines execute:
n_samples, n_features = X.shape # 10, 2
n_values = np.max(X, axis=0) + 1 # [100, 21]
self.n_values_ = n_values
Next the feature_indices_
parameter is calculated.
n_values = np.hstack([[0], n_values]) # [0, 100, 21]
indices = np.cumsum(n_values) # [0, 100, 121]
self.feature_indices_ = indices
So feature_indices_
is merely the cumulative sum of n_values_
with a 0 prepended.
Next, a scipy.sparse.coo_matrix
is constructed from the data. It is initialized from three arrays: the sparse data (all ones), the row indices, and the column indices.
column_indices = (X + indices[:-1]).ravel()
# array([ 3, 105, 10, 101, 15, 103, 33, 107, 54, 108, 55, 112, 78, 115, 79, 119, 80, 120, 99, 108])
row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features)
# array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9], dtype=int32)
data = np.ones(n_samples * n_features)
# array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
out = sparse.coo_matrix((data, (row_indices, column_indices)),
shape=(n_samples, indices[-1]),
dtype=self.dtype).tocsr()
# <10x121 sparse matrix of type '<type 'numpy.float64'>' with 20 stored elements in Compressed Sparse Row format>
Note that the coo_matrix
is immediately converted to a scipy.sparse.csr_matrix
. The coo_matrix
is used as an intermediate format because it "facilitates fast conversion among sparse formats."
Now, if n_values='auto'
, the sparse csr matrix is compressed down to only the columns with active features. The sparse csr_matrix
is returned if sparse=True
, otherwise it is densified before returning.
if self.n_values == 'auto':
mask = np.array(out.sum(axis=0)).ravel() != 0
active_features = np.where(mask)[0] # array([ 3, 10, 15, 33, 54, 55, 78, 79, 80, 99, 101, 103, 105, 107, 108, 112, 115, 119, 120])
out = out[:, active_features] # <10x19 sparse matrix of type '<type 'numpy.float64'>' with 20 stored elements in Compressed Sparse Row format>
self.active_features_ = active_features
return out if self.sparse else out.toarray()
Now let's work in reverse. We'd like to know how to recover X
given the sparse matrix that is returned along with the OneHotEncoder
features detailed above. Let's assume we actually ran the code above by instantiating a new OneHotEncoder
and running fit_transform
on our data X
.
from sklearn import preprocessing
ohc = preprocessing.OneHotEncoder() # all default params
out = ohc.fit_transform(X)
The key insight to solving this problem is understanding the relationship between active_features_
and out.indices
. For a csr_matrix
, the indices array contains the column numbers for each data point. However, these column numbers are not guaranteed to be sorted. To sort them, we can use the sorted_indices
method.
out.indices # array([12, 0, 10, 1, 11, 2, 13, 3, 14, 4, 15, 5, 16, 6, 17, 7, 18, 8, 14, 9], dtype=int32)
out = out.sorted_indices()
out.indices # array([ 0, 12, 1, 10, 2, 11, 3, 13, 4, 14, 5, 15, 6, 16, 7, 17, 8, 18, 9, 14], dtype=int32)
We can see that before sorting, the indices are actually reversed along the rows. In other words, they are ordered with the last column first and the first column last. This is evident from the first two elements: [12, 0]. 0 corresponds to the 3 in the first column of X
, since 3 is the minimum element it was assigned to the first active column. 12 corresponds to the 5 in the second column of X
. Since the first row occupies 10 distinct columns, the minimum element of the second column (1) gets index 10. The next smallest (3) gets index 11, and the third smallest (5) gets index 12. After sorting, the indices are ordered as we would expect.
Next we look at active_features_
:
ohc.active_features_ # array([ 3, 10, 15, 33, 54, 55, 78, 79, 80, 99, 101, 103, 105, 107, 108, 112, 115, 119, 120])
Notice that there are 19 elements, which corresponds to the number of distinct elements in our data (one element, 8, was repeated once). Notice also that these are arranged in order. The features that were in the first column of X
are the same, and the features in the second column have simply been summed with 100, which corresponds to ohc.feature_indices_[1]
.
Looking back at out.indices
, we can see that the maximum column number is 18, which is one minus the 19 active features in our encoding. A little thought about the relationship here shows that the indices of ohc.active_features_
correspond to the column numbers in ohc.indices
. With this, we can decode:
import numpy as np
decode_columns = np.vectorize(lambda col: ohc.active_features_[col])
decoded = decode_columns(out.indices).reshape(X.shape)
This gives us:
array([[ 3, 105],
[ 10, 101],
[ 15, 103],
[ 33, 107],
[ 54, 108],
[ 55, 112],
[ 78, 115],
[ 79, 119],
[ 80, 120],
[ 99, 108]])
And we can get back to the original feature values by subtracting off the offsets from ohc.feature_indices_
:
recovered_X = decoded - ohc.feature_indices_[:-1]
array([[ 3, 5],
[10, 1],
[15, 3],
[33, 7],
[54, 8],
[55, 12],
[78, 15],
[79, 19],
[80, 20],
[99, 8]])
Note that you will need to have the original shape of X
, which is simply (n_samples, n_features)
.
Given the sklearn.OneHotEncoder
instance called ohc
, the encoded data (scipy.sparse.csr_matrix
) output from ohc.fit_transform
or ohc.transform
called out
, and the shape of the original data (n_samples, n_feature)
, recover the original data X
with:
recovered_X = np.array([ohc.active_features_[col] for col in out.sorted_indices().indices])
.reshape(n_samples, n_features) - ohc.feature_indices_[:-1]
Upvotes: 26
Reputation: 57
If the features are dense, like [1,2,4,5,6], with several number missed. Then, we can mapping them to corresponding positions.
>>> import numpy as np
>>> from scipy import sparse
>>> def _sparse_binary(y):
... # one-hot codes of y with scipy.sparse matrix.
... row = np.arange(len(y))
... col = y - y.min()
... data = np.ones(len(y))
... return sparse.csr_matrix((data, (row, col)))
...
>>> y = np.random.randint(-2,2, 8).reshape([4,2])
>>> y
array([[ 0, -2],
[-2, 1],
[ 1, 0],
[ 0, -2]])
>>> yc = [_sparse_binary(y[:,i]) for i in xrange(2)]
>>> for i in yc: print i.todense()
...
[[ 0. 0. 1. 0.]
[ 1. 0. 0. 0.]
[ 0. 0. 0. 1.]
[ 0. 0. 1. 0.]]
[[ 1. 0. 0. 0.]
[ 0. 0. 0. 1.]
[ 0. 0. 1. 0.]
[ 1. 0. 0. 0.]]
>>> [i.shape for i in yc]
[(4, 4), (4, 4)]
This is a compromised and simple method, but works and easy to reverse by argmax(), e.g.:
>>> np.argmax(yc[0].todense(), 1) + y.min(0)[0]
matrix([[ 0],
[-2],
[ 1],
[ 0]])
Upvotes: 1
Reputation: 2815
Just compute dot-product of the encoded values with ohe.active_features_
. It works both for sparse and dense representation. Example:
from sklearn.preprocessing import OneHotEncoder
import numpy as np
orig = np.array([6, 9, 8, 2, 5, 4, 5, 3, 3, 6])
ohe = OneHotEncoder()
encoded = ohe.fit_transform(orig.reshape(-1, 1)) # input needs to be column-wise
decoded = encoded.dot(ohe.active_features_).astype(int)
assert np.allclose(orig, decoded)
The key insight is that the active_features_
attribute of the OHE model represents the original values for each binary column. Thus we can decode the binary-encoded number by simply computing a dot-product with active_features_
. For each data point there's just a single 1
the position of the original value.
Upvotes: 9
Reputation: 50328
The short answer is "no". The encoder takes your categorical data and automagically transforms it to a reasonable set of numbers.
The longer answer is "not automatically". If you provide an explicit mapping using the n_values parameter, though, you can probably implement own decoding at the other side. See the documentation for some hints on how that might be done.
That said, this is a fairly strange question. You may want to, instead, use a DictVectorizer
Upvotes: 0