Reputation: 5077
For my work with hxt I implemented the following function:
-- | Construction of a 8 argument arrow from a 8-ary function. Same
-- implementation as in @Control.Arrow.ArrowList.arr4@.
arr8 :: ArrowList a => (b1 -> b2 -> b3 -> b4 -> b5 -> b6 -> b7 -> b8 -> c)
-> a (b1, (b2, (b3, (b4, (b5, (b6, (b7, b8))))))) c
arr8 f = arr ( \ ~(x1, ~(x2, ~(x3, ~(x4, ~(x5, ~(x6, ~(x7, x8)))))))
-> f x1 x2 x3 x4 x5 x6 x7 x8 )
As mentioned in the haddock comment the above function arr8
takes an 8-ary function and returns a 8 argument arrow. I use the function like this: (x1 &&& x2 &&& ... x8) >>> arr8 f
whereby x1
to x8
are arrows.
My question: Is there a way to avoid the big tuple definition? Is there a more elegant implementation of arr8
?
Info: I used the same code schema as in the function arr4 (see source code of arr4)
Upvotes: 6
Views: 319
Reputation:
My approach would be writing
arr8 f = arr (uncurry8 f)
I don't know if we can write a generic uncurryN n f
function (probably not), but I can offer you a pointfree uncurry_n
for each n
in a systematic manner like so:
uncurry3 f = uncurry ($) . cross (uncurry . f) id
uncurry4 f = uncurry ($) . cross (uncurry3 . f) id
...
uncurry8 f = uncurry ($) . cross (uncurry7 . f) id
where
cross f g = pair (f . fst) (g . snd)
pair f g x = (f x, g x)
Upvotes: 2
Reputation: 74394
This works, though it depends on some quite deep and fragile typeclass magic. It also requires that we change the tuple structure to be a bit more regular. In particular, it should be a type-level linked list preferring (a, (b, (c, ())))
to (a, (b, c))
.
{-# LANGUAGE TypeFamilies #-}
import Control.Arrow
-- We need to be able to refer to functions presented as tuples, generically.
-- This is not possible in any straightforward method, so we introduce a type
-- family which recursively computes the desired function type. In particular,
-- we can see that
--
-- Fun (a, (b, ())) r ~ a -> b -> r
type family Fun h r :: *
type instance Fun () r = r
type instance Fun (a, h) r = a -> Fun h r
-- Then, given our newfound function specification syntax we're now in
-- the proper form to give a recursive typeclass definition of what we're
-- after.
class Zup tup where
zup :: Fun tup r -> tup -> r
instance Zup () where
zup r () = r
-- Note that this recursive instance is simple enough to not require
-- UndecidableInstances, but normally techniques like this do. That isn't
-- a terrible thing, but if UI is used it's up to the author of the typeclass
-- and its instances to ensure that typechecking terminates.
instance Zup b => Zup (a, b) where
zup f ~(a, b) = zup (f a) b
arrTup :: (Arrow a, Zup b) => Fun b c -> a b c
arrTup = arr . zup
And now we can do
> zup (+) (1, (2, ()))
3
> :t arrTup (+)
arrTup (+)
:: (Num a1, Arrow a, Zup b n, Fun n b c ~ (a1 -> a1 -> a1)) =>
a b c
> arrTup (+) (1, (2, ()))
3
If you want to define the specific variants, they're all just arrTup
.
arr8
:: Arrow arr
=> (a -> b -> c -> d -> e -> f -> g -> h -> r)
-> arr (a, (b, (c, (d, (e, (f, (g, (h, ())))))))) r
arr8 = arrTup
It's finally worth noting that if we define a lazy uncurry
uncurryL :: (a -> b -> c) -> (a, b) -> c
uncurryL f ~(a, b) = f a b
then we can write the recursive branch of Zup
in a way that is illustrative to what's going on here
instance Zup b => Zup (a, b) where
zup f = uncurryL (zup . f)
Upvotes: 8