Reputation: 7824
I have a hierarchy of nodes, where "diamond" can occurred.
Every node must be clonable but I don't want to write clone method to every node. So I use CRTP.
class Node
{
public:
Node(){}
Node(Fill*) { }
virtual ~Node() {}
virtual Node * clone() const = 0;
virtual void id() { std::cout << "Node\n"; }
};
//====================================================================
template <typename Base, typename Derived>
class NodeWrap : public Base
{
public:
NodeWrap() { }
NodeWrap(Fill * arg1) : Base(arg1) { }
virtual Node *clone() const
{
return new Derived(static_cast<Derived const &>(*this));
}
};
works as follows:
class NodeA : public NodeWrap<Node, NodeA>
{
public:
typedef NodeWrap<Node, NodeA> BaseClass;
NodeA() { }
NodeA(Fill * f) : BaseClass(f) { }
virtual void id() { std::cout << "NodeA\n"; }
};
First question:
There is know BUG in VS when "covariance is used with virtual inheritance".
Is there a way to overcome the bug, and still have covariant types is clone
method?
I changed return type to be Node
instead of Base
. I can live with that, but I would like to have Base
as return type
Second question:
Problem occurred when multiple inheritance comes to play. I created new wrapper, which inherits virtually
template <typename Base, typename Derived>
class NodeWrapVirtual : public virtual Base
{
public:
NodeWrapVirtual() { }
NodeWrapVirtual(Fill * arg1) : Base(arg1) { }
virtual Node *clone() const
{
return new Derived(static_cast<Derived const &>(*this));
}
};
and now building diamond structure:
class NodeB : public NodeWrapVirtual<Node, NodeB>
{
public:
typedef NodeWrapVirtual<Node, NodeB> BaseClass;
NodeB() { }
NodeB(Fill * f) : BaseClass(f) { }
virtual void id() { std::cout << "NodeB\n"; }
};
//====================================================================
class NodeC : public NodeWrapVirtual<Node, NodeC>
{
public:
typedef NodeWrapVirtual<Node, NodeC> BaseClass;
using BaseClass::clone;
NodeC() { }
NodeC(Fill * f) : BaseClass(f) { }
virtual void id() { std::cout << "NodeC\n"; }
};
and problematic diamond node:
class NodeD : public NodeWrap<NodeB, NodeD>,
public NodeWrap<NodeC, NodeD>
{
public:
typedef NodeWrap<NodeB, NodeD> BaseClassB;
typedef NodeWrap<NodeC, NodeD> BaseClassC;
NodeD() { }
NodeD(Fill * f) : BaseClassB(f), BaseClassC(f) { }
using BaseClassB::clone; // (1)
virtual NodeD *clone() const { return new NodeD(*this); } // (2)
virtual void id() { std::cout << "NodeD\n"; }
};
where are 2 lines I am curious about. (line (1) and (2))
If both lines are removed, there is oblivious compile error, because there is ambiguous clone
method (from every parent). Since I don't use covariant return types, there should work clone
method form each parent, so i use line (1) but it doesn't work. Still ambiguous.
So I use line (2) and it works.
Is there a nice way, to avoid writing line (2)?
HERE is full working example on ideone.
Upvotes: 4
Views: 2082
Reputation: 2767
First you should be very carefull to use virtual inheritance with members inside the virtual base (look at https://stackoverflow.com/a/1193516/1918154, "Effective C++", item 20: "Avoid data members in public interfaces" and http://www.parashift.com/c++-faq-lite/multiple-inheritance.html#faq-25.8). Your node
gets an pointer to a fill
which is not used, but it looks like you need it somewhere.
Your problem can be solved when you move the inhertance relationship (public virtual
and public
) in the base class for your NodeWrap
.
template <typename Base>
class InheritVirtual
: public virtual Base
{};
template <typename... Bases>
class InheritBases
: public Bases...
{
virtual Node* clone() const = 0;
virtual void id() const = 0;
};
class NodeB : public NodeWrap<InheritVirtual<Node>, NodeB>
{
//...
};
class NodeC : public NodeWrap<InheritVirtual<Node>, NodeB>
{
//...
};
class NodeD : public NodeWrap<InheritBases<NodeB,NodeC>, NodeD>
{
//...
};
Running Example.
The pure virtual methods in InheritBases
are needed because the so called domination rule (Dominance in virtual inheritance).
The problem to be solved is a way to transfer paramters to the right constructor in case of multiple bases. Unlike Node
(wich is a virtual base) it is ok to let NodeB
and NodeC
have member variables and non trivial constructors.
Upvotes: 3
Reputation: 119877
Each virtual function must have a unique final overrider in each derived class. This has nothing to do with name lookup (the requirement is for the functions, not for their names), thus using
is irrelevant.
Use a multi-base-classed node class template:
template <class Derived, class Base1, class Base2>
class node2 : // etc
// or use a variadic template if you have more than two bases
As for covariant returns, they are strictly unnecessary, if convenient. You can always split each virtual function into a private virtual and a public non-virtual. This comes handy if you want to return covariant smart pointers, which is not supported by the regular covariant return machinery at all.
Upvotes: 3