Reputation: 548
My problem is simple. I have timestamps data from twitter. Each row is a user, each column gives the last time the user twitted.
time_0 time_1 time_2 time_3
21/03/2014 16:17 21/03/2014 15:40 21/03/2014 14:55 21/03/2014 12:50
21/03/2014 16:29 21/03/2014 16:26 21/03/2014 16:23 21/03/2014 16:21
04/07/2012 13:43 04/07/2012 13:37 04/07/2012 13:34 04/07/2012 13:29
19/03/2014 01:41 18/03/2014 01:19 17/03/2014 00:50 05/03/2014 22:30
What I would like to do is getting time differences. For each column, I would like to replace the date and time by the time since the last post happened. For example, if my first post happened at 8 pm, and my second post at 8 45, I want to get '45 minutes' in my first column. Ideally, my output is like this (the difference is calculated in seconds)
time_0 time_1 time_2 time_3
2220 2700 7500 43860
180 180 120 0
360 180 300 300
87720 88140 -4138800 5794500
60 0 0 0
74340 1800 0 540
I do it like this:
df = pandas.read_csv("testtimedelta.csv",header=0,parse_dates=column_names)
df=df.dropna()#get rid of not complete rows
column_names=[]
for i in range(100):
column_names.append('time_'+str(i))
deltadatas=df[column_names]
for i in range(len(column_names)-1):
deltadatas[column_names[i]]=deltadatas[column_names[i]]-deltadatas[column_names[i+1]]/ np.timedelta64(1,'s')
This seems right, except for certain cells it returns a result that has nothing to do with the input, for example 4 million seconds where it should be 1 million. Sometimes it even returns a negative result, as you can see in my output example above.
Is anyone able to explain what happened? Suggest a better way to do it?
I am using numpy version 1.8.0, and pandas version 0.13.0
EDIT: an example of what is wrong.
state followers friends tweets_number time_0 source_0 time_1 source_1 time_2 source_2 time_3
Bot 3890 2222 1211 19/03/2014 01:41 twitterfeed 18/03/2014 01:19 twitterfeed 17/03/2014 00:50 twitterfeed 05/03/2014 22:30
In this example, time2-time3 will give me -47 days, which is impossible, and if I do what @Jeff suggested below, again 47 days.
Thanks very much for any help!!
Upvotes: 0
Views: 69
Reputation: 129048
Timedelta docs are here
In [29]: df1 = DataFrame(dict([ ("t{0}".format(i),date_range('20130101 01:0{0}'.format(i*3),periods=5,freq='T')) for i in range(2) ]))
In [30]: df2 = DataFrame(dict([ ("t{0}".format(i+3),date_range('20130101 01:0{0}'.format(i*5),periods=5,freq='T')) for i in range(2) ]))
In [31]: df = df1.join(df2)
In [32]: df
Out[32]:
t0 t1 t3 t4
0 2013-01-01 01:00:00 2013-01-01 01:03:00 2013-01-01 01:00:00 2013-01-01 01:05:00
1 2013-01-01 01:01:00 2013-01-01 01:04:00 2013-01-01 01:01:00 2013-01-01 01:06:00
2 2013-01-01 01:02:00 2013-01-01 01:05:00 2013-01-01 01:02:00 2013-01-01 01:07:00
3 2013-01-01 01:03:00 2013-01-01 01:06:00 2013-01-01 01:03:00 2013-01-01 01:08:00
4 2013-01-01 01:04:00 2013-01-01 01:07:00 2013-01-01 01:04:00 2013-01-01 01:09:00
[5 rows x 4 columns]
In [33]: (df.T-df.T.shift()).T.astype('timedelta64[s]')
Out[33]:
t0 t1 t3 t4
0 NaN 180 -180 300
1 NaN 180 -180 300
2 NaN 180 -180 300
3 NaN 180 -180 300
4 NaN 180 -180 300
[5 rows x 4 columns]
IIRC the astype
requires pandas 0.13.1 (but you can always df.apply(lambda x: x/np.timedelta64(1,'s'))
Upvotes: 1