Reputation: 2339
Sometimes I want to pass argument-value pairs to a higher-order function, where the value I should pass is determined by the argument I pass. I want to be able to pass the argument without explicitly specifying the accompanying value. In particular, I'm interested in the case where the argument is itself a function.
Generic Example:
Here's a very generic example, where my-foo
and my-bar
are functions that I'm passing to higher-foo
:
(higher-foo my-foo :option4 args) ;good
(higher-foo my-bar :option13 args) ;good
(higher-foo my-foo :option13 args) ;how stupid are you?! my-foo requires :option4!
Question: Is there a "standard" method for making :option4
or :option13
to be inferable by higher-foo
so that I can just write (higher-foo my-foo)
and (higher-foo my-bar)
?
More Specific Example:
Bear in mind that there are better alternatives to the following code, but I'm just trying to put forward a concrete example of what I'm talking about:
(defn seq-has? [f n someseq]
(every? (partial apply f)
(partition n 1 someseq)))
(defn monotonicity [a b]
(<= a b))
(defn generalized-fib [a b c]
(= c (+ a b)))
(seq-has? monotonicity 2 someseq)
should return true if the sequence is monotonic, false otherwise. (seq-has? generalized-fib 3 someseq)
should return true if the sequence follows the generalized Fibonacci form, false otherwise.
But the "2" and "3" bother me. I could have an arbitrary number of properties to test for, and I don't want to have to remember the appropriate "magic numbers" for such calls.
Note: I know of two ways to do this, and for my own personal use, I suppose they both work. But I'm interested in what is idiomatic or considered best practice in the community. I'll post my answers, but I'm hoping there are more solutions.
Upvotes: 0
Views: 218
Reputation: 2339
This solution seems like a hack to me. Is it considered common/idiomatic? Use meta-data on the functions that define the property you are looking for:
(defn higher-foo [foo & args]
(apply foo (:option (meta foo))
args))
(def my-foo
(with-meta
(fn [a b] (println "I'm doing something cool"))
{:option :option4}))
;using it:
user=> (higher-foo my-foo arg)
Upvotes: -1
Reputation: 9266
Since you are asking for a standard way how a function determines a not passed argument from one argument:
(defn f
([arg0] (case a :foo (f a :bar)
:baz (f a :quux)))
([arg0 arg1] ...))
Depending on your use case a different dispatch construct than case
may be a better fit.
For your generic example this implies that higher-foo
should determine the correct :option
in the desired overload like demonstrated above.
In your specific example, you can't determine the n
from the passed function. You need a more specific datastructure:
(defn seq-has? [{:keys [f n]} s]
(every? (partial apply f)
(partition n 1 s)))
(def monotonicity
{:f <=
:n 2})
(def generalized-fib
{:f #(= (+ %1 %2) %3)
:n 3})
(seq-has? monotonicity [1 2 3])
;; => true
Upvotes: 2
Reputation: 6956
Just make the predicate function itself take variadic arguments, and have it do the partitioning / recurring. Your monotonic? for instance already exists in core, and is called <=
(<= 1 2 4 5)
=> true
(<= 1 2 1 5)
=> false
Here's the source for the 1, 2 and variadic arg versions:
(source <=)
(defn <=
"Returns non-nil if nums are in monotonically non-decreasing order,
otherwise false."
{:inline (fn [x y] `(. clojure.lang.Numbers (lte ~x ~y)))
:inline-arities #{2}
:added "1.0"}
([x] true)
([x y] (. clojure.lang.Numbers (lte x y)))
([x y & more]
(if (<= x y)
(if (next more)
(recur y (first more) (next more))
(<= y (first more)))
false)))
You can make a fib? work the same way, have it take variadic arguments and recur over triples:
(defn fib?
[a b & [c & r]]
(if (= c (+ a b))
(if r
(recur b c r)
true)
false))
(fib? 0 1 1)
=> true
(fib? 2 3 5 8 13)
=> true
Upvotes: 4