Reputation: 14604
I have a data frame as follows:
> head(train)
S D Date
1 1 1 2010-02-05
2 1 1 2010-02-12
3 1 1 2010-02-19
The Date column has only one date per week, and for each present date I would like to insert 6 rows for all missing days after the mentioned date. So the result would look like:
> head(train)
S D Date
1 1 1 2010-02-05
1 1 1 2010-02-06 <- inserted
1 1 1 2010-02-07 <- inserted
1 1 1 2010-02-08 <- inserted
1 1 1 2010-02-09 <- inserted
1 1 1 2010-02-10 <- inserted
1 1 1 2010-02-11 <- inserted
2 1 1 2010-02-12
etc
Upvotes: 3
Views: 1434
Reputation: 2414
You can get the number of missing rows by:
nMiss <- diff(as.Date(train$Date))
You can then repeat each row of the data.frame the relevant number of times:
longTrain <- train[rep(1:nrow(train), times=c(nMiss, 1)),]
You can generate a date offset along the lines of:
off <- unlist(lapply(c(nMiss,1)-1, seq, from=0)
longTrain$Date <- as.Date(longTrain$Date)+off
If you want to add extra rows at the end of the data frame, you can change the constant 1 in c(nMiss, 1)
to the relevant number.
Upvotes: 1
Reputation: 67778
Another way of using na.locf
in package zoo
, where you create a zoo
time series, and use the xout
argument in na.locf
. xout
specifies which date range to use for extra-/interpolation.
library(zoo)
# either convert raw data to zoo object
z <- read.zoo(text = "S D Date
1 1 1 2010-02-05
2 1 1 2010-02-12
3 1 1 2010-02-19", index.column = "Date")
# ...or convert your data frame to zoo
z <- zoo(x = df[ , c("S", "D")], order.by = df$Date)
# create a sequence of dates, from first to last date in original data
tt <- seq(from = min(index(z)), to = max(index(z)), by = "day")
# expand time series to 'tt', and replace each NA with the most recent non-NA prior to it
na.locf(z, xout = tt)
# S D
# 2010-02-05 1 1
# 2010-02-06 1 1
# 2010-02-07 1 1
# 2010-02-08 1 1
# 2010-02-09 1 1
# 2010-02-10 1 1
# 2010-02-11 1 1
# 2010-02-12 1 1
# 2010-02-13 1 1
# 2010-02-14 1 1
# 2010-02-15 1 1
# 2010-02-16 1 1
# 2010-02-17 1 1
# 2010-02-18 1 1
# 2010-02-19 1 1
Upvotes: 1
Reputation: 21492
Being a simpleton:-),
library(lubridate)
train
# D S date
# 1 1 2 2010-02-05
# 2 1 3 2010-02-12
ttmp<-train[1,]
for(j in 1:6) ttmp<-rbind(ttmp,train[1,])
for(j in 2:7) ttmp[j,3]<-ttmp[j-1,3]+ddays(1)
ttmp
# D S date
# 1 1 2 2010-02-05
# 2 1 2 2010-02-06
# 3 1 2 2010-02-07
# 4 1 2 2010-02-08
# 5 1 2 2010-02-09
# 6 1 2 2010-02-10
# 7 1 2 2010-02-11
newtrain<-rbind(train[1,],ttmp)
Then loop over all your initial lines and rbind
it all together.
Upvotes: 1
Reputation: 16090
Probably overkill, but the point is to do a join on the dates with the "correct" dates then fill in:
library(dplyr)
library(zoo)
train <- data.frame(D = 1:3, S = 4:6, Date = as.Date("2010-02-05") + 7*(1:3))
full.dates <- as.Date(min(train$Date):max(train$Date), origin = "1970-01-01")
db <- data.frame(Date = full.dates)
fixed <- left_join(db, train)
# Fill from top using zoo::na.locf
fixed[ ,c("D", "S")] <- na.locf(fixed[ ,c("D", "S")])
Upvotes: 4