Reputation: 6657
I have to filter a data frame using as criterion those row in which is contained the string RTB
.
I'm using dplyr
.
d.del <- df %>%
group_by(TrackingPixel) %>%
summarise(MonthDelivery = as.integer(sum(Revenue))) %>%
arrange(desc(MonthDelivery))
I know I can use the function filter
in dplyr
but I don't exactly how to tell it to check for the content of a string.
In particular I want to check the content in the column TrackingPixel
. If the string contains the label RTB
I want to remove the row from the result.
Upvotes: 323
Views: 750153
Reputation: 23817
Here's another dplyr
solution, using filter(if_all/if_any)
. The advantage is that you can easily extend to more than one column. Below showing how to filter for rows with a given string in any column, using diamonds
as example, looking for the string "V".
edit to reflect changes in the dplyr syntax (>=dplyr vs. 1.0.10). Previously using across
(now deprecated) and even before that filter_all
or filter_any
(superseded).
Removing rows where any column fulfils a condition
library(dplyr)
## with if_any
ggplot2::diamonds %>%
## NB ! needs to come before if_any
filter(!if_any(everything(), ~ grepl('V', .))) %>%
head()
#> # A tibble: 6 × 10
#> carat cut color clarity depth table price x y z
#> <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
#> 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
#> 3 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
#> 4 0.3 Good J SI1 64 55 339 4.25 4.28 2.73
#> 5 0.22 Premium F SI1 60.4 61 342 3.88 3.84 2.33
#> 6 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
## or with if_all
ggplot2::diamonds %>%
filter(if_all(everything(), ~ !grepl('V', .))) %>%
head()
#> # A tibble: 6 × 10
#> carat cut color clarity depth table price x y z
#> <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
#> 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
#> 3 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
#> 4 0.3 Good J SI1 64 55 339 4.25 4.28 2.73
#> 5 0.22 Premium F SI1 60.4 61 342 3.88 3.84 2.33
#> 6 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
Filtering for rows where any column fulfils a condition
## The new syntax makes it also easy to positively filter rows
## where one columns fulfils a condition
ggplot2::diamonds %>%
filter(if_any(everything(), ~ grepl('V',.))) %>%
head()
#> # A tibble: 6 × 10
#> carat cut color clarity depth table price x y z
#> <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
#> 2 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
#> 3 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
#> 4 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
#> 5 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
#> 6 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
Upvotes: 21
Reputation: 23817
A further option based on Akruns' suggestion - create a logical vector with rowSums and subset. Only with base R. This is in particular then useful and elegant, when the column contains exactly the value that we are looking for. (or if you can create a two-dimensional array with a simple conditional statement like below: df1 == "no_data"
)
## this is very easy when the expected value is EXACTLY the string
df1 <- structure(list(time = c("1:00", "2:00", "no_data", "3:00"), speed = c("30", "no_data", "no_data", "50"), wheels = c("no_data", "18", "no_data", "18")), .Names = c("time", "speed", "wheels"), class = "data.frame", row.names = c(NA, -4L))
df1[rowSums(df1 == "no_data") == 0, , drop = FALSE]
#> time speed wheels
#> 4 3:00 50 18
## it's a bit more verbose when the expected value just CONTAINS the string
mtcars$type <- rownames(mtcars)
mtcars[rowSums(apply(mtcars, 2, \(x) grepl('Toyota|Mazda', x))) > 0, , drop = FALSE] |> head()
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> type
#> Mazda RX4 Mazda RX4
#> Mazda RX4 Wag Mazda RX4 Wag
#> Toyota Corolla Toyota Corolla
#> Toyota Corona Toyota Corona
Upvotes: 1
Reputation: 3321
This answer similar to others, but using preferred stringr::str_detect
and dplyr rownames_to_column
.
library(tidyverse)
mtcars %>%
rownames_to_column("type") %>%
filter(stringr::str_detect(type, 'Toyota|Mazda') )
#> type mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> 2 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> 3 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> 4 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Created on 2018-06-26 by the reprex package (v0.2.0).
Upvotes: 54
Reputation: 8833
Solution
It is possible to use str_detect
of the stringr
package included in the tidyverse
package. str_detect
returns True
or False
as to whether the specified vector contains some specific string. It is possible to filter using this boolean value. See Introduction to stringr for details about stringr
package.
library(tidyverse)
# ─ Attaching packages ──────────────────── tidyverse 1.2.1 ─
# ✔ ggplot2 2.2.1 ✔ purrr 0.2.4
# ✔ tibble 1.4.2 ✔ dplyr 0.7.4
# ✔ tidyr 0.7.2 ✔ stringr 1.2.0
# ✔ readr 1.1.1 ✔ forcats 0.3.0
# ─ Conflicts ───────────────────── tidyverse_conflicts() ─
# ✖ dplyr::filter() masks stats::filter()
# ✖ dplyr::lag() masks stats::lag()
mtcars$type <- rownames(mtcars)
mtcars %>%
filter(str_detect(type, 'Toyota|Mazda'))
# mpg cyl disp hp drat wt qsec vs am gear carb type
# 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4
# 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Mazda RX4 Wag
# 3 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corolla
# 4 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Toyota Corona
The good things about Stringr
We should use rather stringr::str_detect()
than base::grepl()
. This is because there are the following reasons.
stringr
package start with the prefix str_
, which makes the code easier to read.stringr
package is always the data.frame (or value), then comes the parameters.(Thank you Paolo)object <- "stringr"
# The functions with the same prefix `str_`.
# The first argument is an object.
stringr::str_count(object) # -> 7
stringr::str_sub(object, 1, 3) # -> "str"
stringr::str_detect(object, "str") # -> TRUE
stringr::str_replace(object, "str", "") # -> "ingr"
# The function names without common points.
# The position of the argument of the object also does not match.
base::nchar(object) # -> 7
base::substr(object, 1, 3) # -> "str"
base::grepl("str", object) # -> TRUE
base::sub("str", "", object) # -> "ingr"
Benchmark
The results of the benchmark test are as follows. For large dataframe, str_detect
is faster.
library(rbenchmark)
library(tidyverse)
# The data. Data expo 09. ASA Statistics Computing and Graphics
# http://stat-computing.org/dataexpo/2009/the-data.html
df <- read_csv("Downloads/2008.csv")
print(dim(df))
# [1] 7009728 29
benchmark(
"str_detect" = {df %>% filter(str_detect(Dest, 'MCO|BWI'))},
"grepl" = {df %>% filter(grepl('MCO|BWI', Dest))},
replications = 10,
columns = c("test", "replications", "elapsed", "relative", "user.self", "sys.self"))
# test replications elapsed relative user.self sys.self
# 2 grepl 10 16.480 1.513 16.195 0.248
# 1 str_detect 10 10.891 1.000 9.594 1.281
Upvotes: 256
Reputation: 5675
The answer to the question was already posted by the @latemail in the comments above. You can use regular expressions for the second and subsequent arguments of filter
like this:
dplyr::filter(df, !grepl("RTB",TrackingPixel))
Since you have not provided the original data, I will add a toy example using the mtcars
data set. Imagine you are only interested in cars produced by Mazda or Toyota.
mtcars$type <- rownames(mtcars)
dplyr::filter(mtcars, grepl('Toyota|Mazda', type))
mpg cyl disp hp drat wt qsec vs am gear carb type
1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4
2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Mazda RX4 Wag
3 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corolla
4 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Toyota Corona
If you would like to do it the other way round, namely excluding Toyota and Mazda cars, the filter
command looks like this:
dplyr::filter(mtcars, !grepl('Toyota|Mazda', type))
Upvotes: 384