Reputation: 7913
i have a python data frame, which contains 3 columns:
['date', 'country', 'dollar']
country is a string, which normally looks like 'singapore' 'ukraine' etc
sometimes, country column's item is a list of countries, separated by |, such as
'US|UK|Germany'
the corresponding row will be:
20140101, 'US|UK|Germany', 123456
what i want is to 'unpack' the country column, and makes it strictly 1 country per row, the above row should be unpacked into 3 rows:
20140101, 'US', 123456
20140101, 'UK', 123456
20140101, 'Germany', 123456
is there any neat way to do this?
thanks!
Upvotes: 6
Views: 15787
Reputation: 54340
This solution will change the order of you columns, which I think is fine in most cases. You can replace dict
with OrderedDict
if you want to preserve the column orders.
In [31]:
print DF
date country dollar
0 20140101 US|UK|Germany 123456
1 20140101 US|UK|Germany 123457
[2 rows x 3 columns]
In [32]:
DF.country=DF.country.apply(lambda x: x.split('|'))
print DF
date country dollar
0 20140101 [US, UK, Germany] 123456
1 20140101 [US, UK, Germany] 123457
[2 rows x 3 columns]
In [33]:
print pd.concat([pd.DataFrame(dict(zip(DF.columns,DF.ix[i]))) for i in range(len(DF))])
country date dollar
0 US 20140101 123456
1 UK 20140101 123456
2 Germany 20140101 123456
0 US 20140101 123457
1 UK 20140101 123457
2 Germany 20140101 123457
[6 rows x 3 columns]
Upvotes: 7
Reputation: 121
Here you go:
a = [20140101, 'US|UK|Germany', 123456]
[[a[0], country, a[2]] for country in a[1].split('|')]
[[20140101, 'US', 123456],
[20140101, 'UK', 123456],
[20140101, 'Germany', 123456]]
Upvotes: 1