Reputation: 263
I'm working on opencv problem to figure out which circles are filled. However, sometimes edge of circles are cause of false positive. It makes my wonder if I can remove these circles by turning all pixels white that have high R value in RGB. My approach is to create a mask of pixels that are pinkish and then subtract mask from original image to remove circles. As of now I am getting black mask. I'm doing something wrong. Please guide.
rgb = cv2.imread(img, cv2.CV_LOAD_IMAGE_COLOR)
rgb_filtered = cv2.inRange(rgb, (200, 0, 90), (255, 110, 255))
cv2.imwrite('mask.png',rgb_filtered)
Upvotes: 5
Views: 7809
Reputation: 669
I've tried to come up with a solution in Python. Basically the process is the following:
You may need to tune up the white ratio threshold to fit your application. I've used 0.7 as it seems a reasonable value.
import cv2
import numpy
# Read image and apply gaussian blur
img = cv2.imread("circles.png", cv2.CV_LOAD_IMAGE_GRAYSCALE)
img = cv2.GaussianBlur(img, (5, 5), 0)
# Apply OTSU thresholding and reverse it so the circles are in the foreground (white)
_, otsu = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
otsu = cv2.bitwise_not(otsu).astype("uint8")
# Find contours that have no parent
contours, hierarchy = cv2.findContours(numpy.copy(otsu), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
parent_contours = [contours[idx] for idx, val in enumerate(hierarchy[0]) if val[3] == -1]
# Loop through all contours to check the ratio of white to black pixels inside each one
filled_circles_contours = list()
for contour in parent_contours:
contour_mask = numpy.zeros(img.shape).astype("uint8")
cv2.drawContours(contour_mask, [contour], -1, 1, thickness=-1)
white_len_mask = len(cv2.findNonZero(contour_mask))
white_len_thresholded = len(cv2.findNonZero(contour_mask * otsu))
white_ratio = float(white_len_thresholded) / white_len_mask
if white_ratio > 0.7:
filled_circles_contours.append(contour)
# Show image with detected circles
cv2.drawContours(img, filled_circles_contours, -1, (0, 0, 0), thickness=2)
cv2.namedWindow("Result")
cv2.imshow("Result", img)
cv2.waitKey(0)
This is the result I obtained from applying the code above to your image:
Upvotes: 1
Reputation: 20130
Here is my solution. Unfortunately it's in C++ too and this is how it works:
check for each circle, whether there are more foreground (drawing) or background (white paper) pixel inside (by some ratio threshold).
int main()
{
cv::Mat colorImage = cv::imread("countFilledCircles.png");
cv::Mat image = cv::imread("countFilledCircles.png", CV_LOAD_IMAGE_GRAYSCALE);
// threshold the image!
cv::Mat thresholded;
cv::threshold(image,thresholded,0,255,CV_THRESH_BINARY_INV | CV_THRESH_OTSU);
// save threshold image for demonstration:
cv::imwrite("countFilledCircles_threshold.png", thresholded);
// find outer-contours in the image these should be the circles!
cv::Mat conts = thresholded.clone();
std::vector<std::vector<cv::Point> > contours;
std::vector<cv::Vec4i> hierarchy;
cv::findContours(conts,contours,hierarchy, CV_RETR_EXTERNAL, CV_C HAIN_APPROX_SIMPLE, cv::Point(0,0));
// colors in which marked/unmarked circle outlines will be drawn:
cv::Scalar colorMarked(0,255,0);
cv::Scalar colorUnMarked(0,0,255);
// each outer contour is assumed to be a circle
// TODO: you could first find the mean radius of all assumed circles and try to find outlier (dirt etc in the image)
for(unsigned int i=0; i<contours.size(); ++i)
{
cv::Point2f center;
float radius;
// find minimum circle enclosing the contour
cv::minEnclosingCircle(contours[i],center,radius);
bool marked = false;
cv::Rect circleROI(center.x-radius, center.y-radius, center.x+radius, center.y+radius);
//circleROI = circleROI & cv::Rect(0,0,image.cols, image.rows);
// count pixel inside the circle
float sumCirclePixel = 0;
float sumCirclePixelMarked = 0;
for(int j=circleROI.y; j<circleROI.y+circleROI.height; ++j)
for(int i=circleROI.x; i<circleROI.x+circleROI.width; ++i)
{
cv::Point2f current(i,j);
// test if pixel really inside the circle:
if(cv::norm(current-center) < radius)
{
// count total number of pixel in the circle
sumCirclePixel = sumCirclePixel+1.0f;
// and count all pixel in the circle which hold the segmentation threshold
if(thresholded.at<unsigned char>(j,i))
sumCirclePixelMarked = sumCirclePixelMarked + 1.0f;
}
}
const float ratioThreshold = 0.5f;
if(sumCirclePixel)
if(sumCirclePixelMarked/sumCirclePixel > ratioThreshold) marked = true;
// draw the circle for demonstration
if(marked)
cv::circle(colorImage,center,radius,colorMarked,1);
else
cv::circle(colorImage,center,radius,colorUnMarked,1);
}
cv::imshow("thres", thresholded);
cv::imshow("colorImage", colorImage);
cv::imwrite("countFilledCircles_output.png", colorImage);
cv::waitKey(-1);
}
giving me these results:
after otsu thresholding:
final image:
Upvotes: 5
Reputation: 2802
Here's how I did it:
Here's my sample result:
When we draw our result on original image:
Here's the sample code (sorry in C++):
void findFilledCircles( Mat& img ){
Mat gray;
cvtColor( img, gray, CV_BGR2GRAY );
/* Apply some blurring to remove some noises */
GaussianBlur( gray, gray, Size(5, 5), 1, 1);
/* Otsu thresholding maximizes inter class variance, pretty good in separating background from foreground */
threshold( gray, gray, 0.0, 255.0, CV_THRESH_OTSU );
erode( gray, gray, Mat(), Point(-1, -1), 1 );
/* Sadly, this is tuning heavy, adjust the params for Hough Circles */
double dp = 1.0;
double min_dist = 15.0;
double param1 = 40.0;
double param2 = 10.0;
int min_radius = 15;
int max_radius = 22;
/* Use hough circles to find the circles, maybe we could use watershed for segmentation instead(?) */
vector<Vec3f> found_circles;
HoughCircles( gray, found_circles, CV_HOUGH_GRADIENT, dp, min_dist, param1, param2, min_radius, max_radius );
/* This is just to draw coloured circles on the 'originally' gray image */
vector<Mat> out = { gray, gray, gray };
Mat output;
merge( out, output );
float diameter = max_radius * 2;
float area = diameter * diameter;
Mat roi( max_radius, max_radius, CV_8UC3, Scalar(255, 255, 255) );
for( Vec3f circ: found_circles ) {
/* Basically we extract the region of the circles, and count the ratio of black pixels (0) and white pixels (255) */
Mat( gray, Rect( circ[0] - max_radius, circ[1] - max_radius, diameter, diameter ) ).copyTo( roi );
float filled_percentage = 1.0 - 1.0 * countNonZero( roi ) / area;
/* If more than half is filled, then maybe it's filled */
if( filled_percentage > 0.5 )
circle( output, Point2f( circ[0], circ[1] ), max_radius, Scalar( 0, 0, 255), 3 );
else
circle( output, Point2f( circ[0], circ[1] ), max_radius, Scalar( 255, 255, 0), 3 );
}
namedWindow("");
moveWindow("", 0, 0);
imshow("", output );
waitKey();
}
Upvotes: 0