Reputation: 1740
I'm implementing Bayesian Changepoint Detection in Python/NumPy (if you are interested have a look at the paper). I need to compute likelihoods for data in ranges [a, b]
, where a
and b
can have all values from 1
to n
. However I can prune the computation at some points, so that I don't have to compute every likelihood. On the other hand some likelihoods are used more than once, so that I can save time by saving the values in a matrix P[a, b]
. Right now I check whether the value is already computed, whenever I use it, but I find that a bit of a hassle. It looks like this:
# ...
P = np.ones((n, n)) * np.inf # a likelihood can't get inf, so I use it
# as pseudo value
for a in range(n):
for b in range(a, n):
# The following two lines get annoying and error prone if you
# use P more than once
if P[a, b] == np.inf:
P[a, b] = likelihood(data, a, b)
Q[a] += P[a, b] * g[a] * Q[a - 1] # some computation using P[a, b]
# ...
I wonder, whether there is a more intuitive and pythonic way to achieve this, without having the if ...
statement before every use of a P[a, b]
. Something like an automagical function call if some condition is not met. I could of course make the likelihood
function aware of the fact that it could save values, but then it needs some kind of state (e.g. becomes an object). I want to avoid that.
The likelihood function
Since it was asked for in a comment, I add the likelihood function. It actually computes the conjugate prior and then the likelihood. And all in log representation... So it is quite complicated.
from scipy.special import gammaln
def gaussian_obs_log_likelihood(data, t, s):
n = s - t
mean = data[t:s].sum() / n
muT = (n * mean) / (1 + n)
nuT = 1 + n
alphaT = 1 + n / 2
betaT = 1 + 0.5 * ((data[t:s] - mean) ** 2).sum() + ((n)/(1 + n)) * (mean**2 / 2)
scale = (betaT*(nuT + 1))/(alphaT * nuT)
# splitting the PDF of the student distribution up is /much/ faster. (~ factor 20)
prob = 1
for yi in data[t:s]:
prob += np.log(1 + (yi - muT)**2/(nuT * scale))
lgA = gammaln((nuT + 1) / 2) - np.log(np.sqrt(np.pi * nuT * scale)) - gammaln(nuT/2)
return n * lgA - (nuT + 1)/2 * prob
Although I work with Python 2.7, both answers for 2.7 and 3.x are appreciated.
Upvotes: 4
Views: 274
Reputation: 328724
I would use a sibling of defaultdict
for this (you can't use defaultdict
directly since it won't tell you the key that is missing):
class Cache(object):
def __init__(self):
self.cache = {}
def get(self, a, b):
key = (a,b)
result = self.cache.get(key, None)
if result is None:
result = likelihood(data, a, b)
self.cache[key] = result
return result
Another approach would be using a cache decorator on likelihood
as described here.
Upvotes: 4