Reputation: 4979
I'd like to get the names of all the keys in a MongoDB collection.
For example, from this:
db.things.insert( { type : ['dog', 'cat'] } );
db.things.insert( { egg : ['cat'] } );
db.things.insert( { type : [] } );
db.things.insert( { hello : [] } );
I'd like to get the unique keys:
type, egg, hello
Upvotes: 382
Views: 285285
Reputation: 465
I just wanted to leave what I ended up implementing in Python to list all keys and possibly sub-keys if values are objects.
it's as efficient as I could get it to be.
import pymongo
def extract_keys(collection: pymongo.collection.Collection,
root_key: str = "",
match_filter: dict | None = None,
get_subkeys=False,
only_type: str | None = None
):
"""
Extract All keys available in a collection
:param collection:
:param root_key: root key to search in
:param match_filter: optional filter mask to reduce searched documents
:param get_subkeys: extract sub-keys (recursive search)
:param only_type: only look for keys with a targeted type as value
:return: list of keys found like:
[
'data.millis',
'data.gnss.lon',
'data.gnss.vel',
'data.gnss.lat',
]
"""
_match_filter = {}
if match_filter:
_match_filter.update(match_filter)
if root_key:
_match_filter.update({root_key: {"$type": "object"}})
pipeline = [
{"$match": _match_filter} if _match_filter else None,
# make all entries arrays of {k: key, v: value}
{"$project": {"keys": {"$objectToArray": "$$ROOT" if not root_key else f"${root_key}"}}},
# make all values individual entries
{"$unwind": "$keys"},
{"$match": {"keys.v": {"$type": only_type}}} if only_type else None, # filter out only a given type if set
# this gives the key and its type
{"$group": {"_id": None, "allkeys": {"$addToSet": {
"key": "$keys.k",
"type": {"$type": "$keys.v"}
}}}}
]
pipeline = [p for p in pipeline if p is not None]
# Execute the pipeline
result = collection.aggregate(pipeline)
res = []
for doc in list(result):
for keyset in doc['allkeys']:
key, type = keyset['key'], keyset['type']
subkey = key if not root_key else root_key + "." + key
if type == 'object' and get_subkeys:
res += extract_keys(collection, subkey, match_filter=match_filter, get_subkeys=True)
else:
res.append(subkey)
return res
Upvotes: 0
Reputation: 21218
Disclaimer: This version is not working for versions > 4.2 because map_reduce
was deprecated.
A cleaned up and reusable solution using pymongo:
from pymongo import MongoClient
from bson import Code
def get_keys(db, collection):
client = MongoClient()
db = client[db]
map = Code("function() { for (var key in this) { emit(key, null); } }")
reduce = Code("function(key, stuff) { return null; }")
result = db[collection].map_reduce(map, reduce, "myresults")
return result.distinct('_id')
Usage:
get_keys('dbname', 'collection')
>> ['key1', 'key2', ... ]
Upvotes: 24
Reputation: 43
We could use the open source tool Variety for it but it lacks compatibility with Mongosh. So please follow below steps to get it working with mongosh
First Install Mongosh CLI
Then download variety.js from https://github.com/CodyDWJones/variety/blob/master/variety.js and move it into your Ubuntu $HOME
Use below command to generate schema
mongosh "mongodb://mongoURIexample" variety.js --eval "use dbexample" --eval "var collection = 'collectionexample'"
Make sure you replace the URI, db and collection name appropriately.
Upvotes: 1
Reputation: 14591
This one lines extracts all keys from a collection into a comma separated sorted string:
db.<collection>.find().map((x) => Object.keys(x)).reduce((a, e) => {for (el of e) { if(!a.includes(el)) { a.push(el) } }; return a}, []).sort((a, b) => a.toLowerCase() > b.toLowerCase()).join(", ")
The result of this query typically looks like this:
_class, _id, address, city, companyName, country, emailId, firstName, isAssigned, isLoggedIn, lastLoggedIn, lastName, location, mobile, printName, roleName, route, state, status, token
Upvotes: 1
Reputation: 103305
To get a list of all the keys minus _id
, consider running the following aggregate pipeline:
var keys = db.collection.aggregate([
{ "$project": {
"hashmaps": { "$objectToArray": "$$ROOT" }
} },
{ "$group": {
"_id": null,
"fields": { "$addToSet": "$hashmaps.k" }
} },
{ "$project": {
"keys": {
"$setDifference": [
{
"$reduce": {
"input": "$fields",
"initialValue": [],
"in": { "$setUnion" : ["$$value", "$$this"] }
}
},
["_id"]
]
}
}
}
]).toArray()[0]["keys"];
Upvotes: 5
Reputation: 3160
I know I am late to the party, but if you want a quick solution in python finding all keys (even the nested ones) you could do with a recursive function:
def get_keys(dl, keys=None):
keys = keys or []
if isinstance(dl, dict):
keys += dl.keys()
list(map(lambda x: get_keys(x, keys), dl.values()))
elif isinstance(dl, list):
list(map(lambda x: get_keys(x, keys), dl))
return list(set(keys))
and use it like:
dl = db.things.find_one({})
get_keys(dl)
if your documents do not have identical keys you can do:
dl = db.things.find({})
list(set(list(map(get_keys, dl))[0]))
but this solution can for sure be optimized.
Generally this solution is basically solving finding keys in nested dicts, so this is not mongodb specific.
Upvotes: 2
Reputation: 2528
Based on @Wolkenarchitekt answer: https://stackoverflow.com/a/48117846/8808983, I write a script that can find patterns in all keys in the db and I think it can help others reading this thread:
"""
Python 3
This script get list of patterns and print the collections that contains fields with this patterns.
"""
import argparse
import pymongo
from bson import Code
# initialize mongo connection:
def get_db():
client = pymongo.MongoClient("172.17.0.2")
db = client["Data"]
return db
def get_commandline_options():
description = "To run use: python db_fields_pattern_finder.py -p <list_of_patterns>"
parser = argparse.ArgumentParser(description=description)
parser.add_argument('-p', '--patterns', nargs="+", help='List of patterns to look for in the db.', required=True)
return parser.parse_args()
def report_matching_fields(relevant_fields_by_collection):
print("Matches:")
for collection_name in relevant_fields_by_collection:
if relevant_fields_by_collection[collection_name]:
print(f"{collection_name}: {relevant_fields_by_collection[collection_name]}")
# pprint(relevant_fields_by_collection)
def get_collections_names(db):
"""
:param pymongo.database.Database db:
:return list: collections names
"""
return db.list_collection_names()
def get_keys(db, collection):
"""
See: https://stackoverflow.com/a/48117846/8808983
:param db:
:param collection:
:return:
"""
map = Code("function() { for (var key in this) { emit(key, null); } }")
reduce = Code("function(key, stuff) { return null; }")
result = db[collection].map_reduce(map, reduce, "myresults")
return result.distinct('_id')
def get_fields(db, collection_names):
fields_by_collections = {}
for collection_name in collection_names:
fields_by_collections[collection_name] = get_keys(db, collection_name)
return fields_by_collections
def get_matches_fields(fields_by_collections, patterns):
relevant_fields_by_collection = {}
for collection_name in fields_by_collections:
relevant_fields = [field for field in fields_by_collections[collection_name] if
[pattern for pattern in patterns if
pattern in field]]
relevant_fields_by_collection[collection_name] = relevant_fields
return relevant_fields_by_collection
def main(patterns):
"""
:param list patterns: List of strings to look for in the db.
"""
db = get_db()
collection_names = get_collections_names(db)
fields_by_collections = get_fields(db, collection_names)
relevant_fields_by_collection = get_matches_fields(fields_by_collections, patterns)
report_matching_fields(relevant_fields_by_collection)
if __name__ == '__main__':
args = get_commandline_options()
main(args.patterns)
Upvotes: 1
Reputation: 75914
You can use aggregation with the new $objectToArray
aggregation operator in version 3.4.4 to convert all top key-value pairs into document arrays, followed by $unwind
and $group
with $addToSet
to get distinct keys across the entire collection. (Use $$ROOT
for referencing the top level document.)
db.things.aggregate([
{"$project":{"arrayofkeyvalue":{"$objectToArray":"$$ROOT"}}},
{"$unwind":"$arrayofkeyvalue"},
{"$group":{"_id":null,"allkeys":{"$addToSet":"$arrayofkeyvalue.k"}}}
])
You can use the following query for getting keys in a single document.
db.things.aggregate([
{"$match":{_id: "<<ID>>"}}, /* Replace with the document's ID */
{"$project":{"arrayofkeyvalue":{"$objectToArray":"$$ROOT"}}},
{"$project":{"keys":"$arrayofkeyvalue.k"}}
])
Upvotes: 165
Reputation: 742
I know this question is 10 years old but there is no C# solution and this took me hours to figure out. I'm using the .NET driver and System.Linq
to return a list of the keys.
var map = new BsonJavaScript("function() { for (var key in this) { emit(key, null); } }");
var reduce = new BsonJavaScript("function(key, stuff) { return null; }");
var options = new MapReduceOptions<BsonDocument, BsonDocument>();
var result = await collection.MapReduceAsync(map, reduce, options);
var list = result.ToEnumerable().Select(item => item["_id"].ToString());
Upvotes: 0
Reputation: 6362
Following the thread from @James Cropcho's answer, I landed on the following which I found to be super easy to use. It is a binary tool, which is exactly what I was looking for: mongoeye.
Using this tool it took about 2 minutes to get my schema exported from command line.
Upvotes: 0
Reputation: 3812
I am surprise, no one here has ans by using simple javascript
and Set
logic to automatically filter the duplicates values, simple example on mongo shellas below:
var allKeys = new Set()
db.collectionName.find().forEach( function (o) {for (key in o ) allKeys.add(key)})
for(let key of allKeys) print(key)
This will print all possible unique keys in the collection name: collectionName.
Upvotes: 7
Reputation: 6026
We can achieve this by Using mongo js file. Add below code in your getCollectionName.js file and run js file in the console of Linux as given below :
mongo --host 192.168.1.135 getCollectionName.js
db_set = connect("192.168.1.135:27017/database_set_name"); // for Local testing
// db_set.auth("username_of_db", "password_of_db"); // if required
db_set.getMongo().setSlaveOk();
var collectionArray = db_set.getCollectionNames();
collectionArray.forEach(function(collectionName){
if ( collectionName == 'system.indexes' || collectionName == 'system.profile' || collectionName == 'system.users' ) {
return;
}
print("\nCollection Name = "+collectionName);
print("All Fields :\n");
var arrayOfFieldNames = [];
var items = db_set[collectionName].find();
// var items = db_set[collectionName].find().sort({'_id':-1}).limit(100); // if you want fast & scan only last 100 records of each collection
while(items.hasNext()) {
var item = items.next();
for(var index in item) {
arrayOfFieldNames[index] = index;
}
}
for (var index in arrayOfFieldNames) {
print(index);
}
});
quit();
Thanks @ackuser
Upvotes: 0
Reputation: 46441
If you are using mongodb 3.4.4 and above then you can use below aggregation using $objectToArray
and $group
aggregation
db.collection.aggregate([
{ "$project": {
"data": { "$objectToArray": "$$ROOT" }
}},
{ "$project": { "data": "$data.k" }},
{ "$unwind": "$data" },
{ "$group": {
"_id": null,
"keys": { "$addToSet": "$data" }
}}
])
Here is the working example
Upvotes: 23
Reputation: 23094
Maybe slightly off-topic, but you can recursively pretty-print all keys/fields of an object:
function _printFields(item, level) {
if ((typeof item) != "object") {
return
}
for (var index in item) {
print(" ".repeat(level * 4) + index)
if ((typeof item[index]) == "object") {
_printFields(item[index], level + 1)
}
}
}
function printFields(item) {
_printFields(item, 0)
}
Useful when all objects in a collection has the same structure.
Upvotes: 3
Reputation: 1090
As per the mongoldb documentation, a combination of distinct
Finds the distinct values for a specified field across a single collection or view and returns the results in an array.
and indexes collection operations are what would return all possible values for a given key, or index:
Returns an array that holds a list of documents that identify and describe the existing indexes on the collection
So in a given method one could do use a method like the following one, in order to query a collection for all it's registered indexes, and return, say an object with the indexes for keys (this example uses async/await for NodeJS, but obviously you could use any other asynchronous approach):
async function GetFor(collection, index) {
let currentIndexes;
let indexNames = [];
let final = {};
let vals = [];
try {
currentIndexes = await collection.indexes();
await ParseIndexes();
//Check if a specific index was queried, otherwise, iterate for all existing indexes
if (index && typeof index === "string") return await ParseFor(index, indexNames);
await ParseDoc(indexNames);
await Promise.all(vals);
return final;
} catch (e) {
throw e;
}
function ParseIndexes() {
return new Promise(function (result) {
let err;
for (let ind in currentIndexes) {
let index = currentIndexes[ind];
if (!index) {
err = "No Key For Index "+index; break;
}
let Name = Object.keys(index.key);
if (Name.length === 0) {
err = "No Name For Index"; break;
}
indexNames.push(Name[0]);
}
return result(err ? Promise.reject(err) : Promise.resolve());
})
}
async function ParseFor(index, inDoc) {
if (inDoc.indexOf(index) === -1) throw "No Such Index In Collection";
try {
await DistinctFor(index);
return final;
} catch (e) {
throw e
}
}
function ParseDoc(doc) {
return new Promise(function (result) {
let err;
for (let index in doc) {
let key = doc[index];
if (!key) {
err = "No Key For Index "+index; break;
}
vals.push(new Promise(function (pushed) {
DistinctFor(key)
.then(pushed)
.catch(function (err) {
return pushed(Promise.resolve());
})
}))
}
return result(err ? Promise.reject(err) : Promise.resolve());
})
}
async function DistinctFor(key) {
if (!key) throw "Key Is Undefined";
try {
final[key] = await collection.distinct(key);
} catch (e) {
final[key] = 'failed';
throw e;
}
}
}
So querying a collection with the basic _id
index, would return the following (test collection only has one document at the time of the test):
Mongo.MongoClient.connect(url, function (err, client) {
assert.equal(null, err);
let collection = client.db('my db').collection('the targeted collection');
GetFor(collection, '_id')
.then(function () {
//returns
// { _id: [ 5ae901e77e322342de1fb701 ] }
})
.catch(function (err) {
//manage your error..
})
});
Mind you, this uses methods native to the NodeJS Driver. As some other answers have suggested, there are other approaches, such as the aggregate framework. I personally find this approach more flexible, as you can easily create and fine-tune how to return the results. Obviously, this only addresses top-level attributes, not nested ones.
Also, to guarantee that all documents are represented should there be secondary indexes (other than the main _id one), those indexes should be set as required
.
Upvotes: 0
Reputation: 61225
I think the best way do this as mentioned here is in mongod 3.4.4+ but without using the $unwind
operator and using only two stages in the pipeline. Instead we can use the $mergeObjects
and $objectToArray
operators.
In the $group
stage, we use the $mergeObjects
operator to return a single document where key/value are from all documents in the collection.
Then comes the $project
where we use $map
and $objectToArray
to return the keys.
let allTopLevelKeys = [
{
"$group": {
"_id": null,
"array": {
"$mergeObjects": "$$ROOT"
}
}
},
{
"$project": {
"keys": {
"$map": {
"input": { "$objectToArray": "$array" },
"in": "$$this.k"
}
}
}
}
];
Now if we have a nested documents and want to get the keys as well, this is doable. For simplicity, let consider a document with simple embedded document that look like this:
{field1: {field2: "abc"}, field3: "def"}
{field1: {field3: "abc"}, field4: "def"}
The following pipeline yield all keys (field1, field2, field3, field4).
let allFistSecondLevelKeys = [
{
"$group": {
"_id": null,
"array": {
"$mergeObjects": "$$ROOT"
}
}
},
{
"$project": {
"keys": {
"$setUnion": [
{
"$map": {
"input": {
"$reduce": {
"input": {
"$map": {
"input": {
"$objectToArray": "$array"
},
"in": {
"$cond": [
{
"$eq": [
{
"$type": "$$this.v"
},
"object"
]
},
{
"$objectToArray": "$$this.v"
},
[
"$$this"
]
]
}
}
},
"initialValue": [
],
"in": {
"$concatArrays": [
"$$this",
"$$value"
]
}
}
},
"in": "$$this.k"
}
}
]
}
}
}
]
With a little effort, we can get the key for all subdocument in an array field where the elements are object as well.
Upvotes: 6
Reputation: 761
I was trying to write in nodejs and finally came up with this:
db.collection('collectionName').mapReduce(
function() {
for (var key in this) {
emit(key, null);
}
},
function(key, stuff) {
return null;
}, {
"out": "allFieldNames"
},
function(err, results) {
var fields = db.collection('allFieldNames').distinct('_id');
fields
.then(function(data) {
var finalData = {
"status": "success",
"fields": data
};
res.send(finalData);
delteCollection(db, 'allFieldNames');
})
.catch(function(err) {
res.send(err);
delteCollection(db, 'allFieldNames');
});
});
After reading the newly created collection "allFieldNames", delete it.
db.collection("allFieldNames").remove({}, function (err,result) {
db.close();
return;
});
Upvotes: -1
Reputation: 527
If your target collection is not too large, you can try this under mongo shell client:
var allKeys = {};
db.YOURCOLLECTION.find().forEach(function(doc){Object.keys(doc).forEach(function(key){allKeys[key]=1})});
allKeys;
Upvotes: 20
Reputation: 5879
This works fine for me:
var arrayOfFieldNames = [];
var items = db.NAMECOLLECTION.find();
while(items.hasNext()) {
var item = items.next();
for(var index in item) {
arrayOfFieldNames[index] = index;
}
}
for (var index in arrayOfFieldNames) {
print(index);
}
Upvotes: 3
Reputation: 3322
With Kristina's answer as inspiration, I created an open source tool called Variety which does exactly this: https://github.com/variety/variety
Upvotes: 235
Reputation: 6140
Using python. Returns the set of all top-level keys in the collection:
#Using pymongo and connection named 'db'
reduce(
lambda all_keys, rec_keys: all_keys | set(rec_keys),
map(lambda d: d.keys(), db.things.find()),
set()
)
Upvotes: 11
Reputation: 23592
You could do this with MapReduce:
mr = db.runCommand({
"mapreduce" : "my_collection",
"map" : function() {
for (var key in this) { emit(key, null); }
},
"reduce" : function(key, stuff) { return null; },
"out": "my_collection" + "_keys"
})
Then run distinct on the resulting collection so as to find all the keys:
db[mr.result].distinct("_id")
["foo", "bar", "baz", "_id", ...]
Upvotes: 386
Reputation: 1734
Here is the sample worked in Python: This sample returns the results inline.
from pymongo import MongoClient
from bson.code import Code
mapper = Code("""
function() {
for (var key in this) { emit(key, null); }
}
""")
reducer = Code("""
function(key, stuff) { return null; }
""")
distinctThingFields = db.things.map_reduce(mapper, reducer
, out = {'inline' : 1}
, full_response = True)
## do something with distinctThingFields['results']
Upvotes: 9
Reputation: 473
I extended Carlos LM's solution a bit so it's more detailed.
Example of a schema:
var schema = {
_id: 123,
id: 12,
t: 'title',
p: 4.5,
ls: [{
l: 'lemma',
p: {
pp: 8.9
}
},
{
l: 'lemma2',
p: {
pp: 8.3
}
}
]
};
Type into the console:
var schemafy = function(schema, i, limit) {
var i = (typeof i !== 'undefined') ? i : 1;
var limit = (typeof limit !== 'undefined') ? limit : false;
var type = '';
var array = false;
for (key in schema) {
type = typeof schema[key];
array = (schema[key] instanceof Array) ? true : false;
if (type === 'object') {
print(Array(i).join(' ') + key+' <'+((array) ? 'array' : type)+'>:');
schemafy(schema[key], i+1, array);
} else {
print(Array(i).join(' ') + key+' <'+type+'>');
}
if (limit) {
break;
}
}
}
Run:
schemafy(db.collection.findOne());
Output
_id <number>
id <number>
t <string>
p <number>
ls <object>:
0 <object>:
l <string>
p <object>:
pp <number>
Upvotes: -1
Reputation: 6295
I have 1 simpler work around...
What you can do is while inserting data/document into your main collection "things" you must insert the attributes in 1 separate collection lets say "things_attributes".
so every time you insert in "things", you do get from "things_attributes" compare values of that document with your new document keys if any new key present append it in that document and again re-insert it.
So things_attributes will have only 1 document of unique keys which you can easily get when ever you require by using findOne()
Upvotes: -3