Reputation: 302
I am trying to get the Adj Close prices from Yahoo Finance into a DataFrame. I have all the stocks I want but I am not able to sort on date.
stocks = ['ORCL', 'TSLA', 'IBM','YELP', 'MSFT']
ls_key = 'Adj Close'
start = datetime(2014,1,1)
end = datetime(2014,3,28)
f = web.DataReader(stocks, 'yahoo',start,end)
cleanData = f.ix[ls_key]
dataFrame = pd.DataFrame(cleanData)
print dataFrame[:5]
I get the following result, which is almost perfect.
IBM MSFT ORCL TSLA YELP
Date
2014-01-02 184.52 36.88 37.61 150.10 67.92
2014-01-03 185.62 36.64 37.51 149.56 67.66
2014-01-06 184.99 35.86 37.36 147.00 71.72
2014-01-07 188.68 36.14 37.74 149.36 72.66
2014-01-08 186.95 35.49 37.61 151.28 78.42
However, the Date is not an Item. so when I run:
print dataFrame['Date']
I get the error:
KeyError: u'no item named Date'
Hope anyone can help me adding the Date.
Upvotes: 19
Views: 73888
Reputation: 910
import pandas_datareader.data as web
import datetime
start = datetime.datetime(2015, 1, 1)
end = datetime.datetime(2016, 1, 1)
web.DataReader('GOOGL', 'yahoo', start, end)
Upvotes: 0
Reputation: 1399
The sub-package pandas.io.data is removed from the latest pandas package and it is available to install separately as pandas-datareader
use git to install the package. in the linux terminal:
git clone https://github.com/pydata/pandas-datareader.git
cd pandas-datareader
python setup.py install
now you can use import pandas_datareader
to your python script for Remote data Access.
For more information Use this link to visit the latest documentation
Upvotes: 1
Reputation: 381
Date is in the index values.
To get it into a column value, you should just use:
dataframe.reset_index(inplace=True,drop=False)
Then you can use
dataframe['Date']
because "Date" will now be one of the keys in your columns of the dataframe.
Upvotes: 7
Reputation: 111
import pandas_datareader.data as web
import datetime
start = datetime.datetime(2013, 1, 1)
end = datetime.datetime(2016, 1, 27)
df = web.DataReader("GOOGL", 'yahoo', start, end)
dates =[]
for x in range(len(df)):
newdate = str(df.index[x])
newdate = newdate[0:10]
dates.append(newdate)
df['dates'] = dates
print df.head()
print df.tail()
Upvotes: 11
Reputation: 31
Use dataFrame.index
to directly access date or to add an explicit column, use dataFrame["Date"] = dataframe.index
stocks = ['ORCL', 'TSLA', 'IBM','YELP', 'MSFT']
ls_key = 'Adj Close'
start = datetime(2014,1,1)
end = datetime(2014,3,28)
f = web.DataReader(stocks, 'yahoo',start,end)
cleanData = f.ix[ls_key]
dataFrame = pd.DataFrame(cleanData)
dataFrame["Date"] = dataframe.index
print dataFrame["Date"] ## or print dataFrame.index
Upvotes: 3
Reputation: 2014
f
is a Panel
You can get a DataFrame
and reset index (Date) using:
f.loc['Adj Close',:,:].reset_index()
but I'm not sure reset_index()
is very useful as you can get Date using
f.loc['Adj Close',:,:].index
You might have a look at http://pandas.pydata.org/pandas-docs/stable/indexing.html#different-choices-for-indexing about indexing
Upvotes: 0
Reputation: 1154
This should do it.
import pandas as pd
from pandas.io.data import DataReader
symbols_list = ['ORCL', 'TSLA', 'IBM','YELP', 'MSFT']
d = {}
for ticker in symbols_list:
d[ticker] = DataReader(ticker, "yahoo", '2014-12-01')
pan = pd.Panel(d)
df1 = pan.minor_xs('Adj Close')
print(df1)
#df_percent_chg = df1.pct_change()
Upvotes: 2