smci
smci

Reputation: 33960

dplyr expression summing sum(!is.na(Field1) + !is.na(Field2)...) giving wrong number

I'm trying to summarize(/mutate) in dplyr by the count of non-NAs in each row... keeps giving wrong answer.

Arithmetic on booleans like sum(FALSE + TRUE + FALSE + TRUE + TRUE) does indeed add up to 3, so where is the problem? And why does dplyr not catch the error?

N = 9
set.seed(1234)
df <- data.frame(id=c(1,1,1,2,2,2,3,3,3), date=c('2005','2006','2007'),
                 Field1 = ifelse(runif(N)>.5, runif(N, 5,30), NA),
                 Field2 = ifelse(runif(N)>.5, runif(N, 4,22), NA),
                 Field3 = ifelse(runif(N)>.5, runif(N, 7,18), NA),
                 Field4 = ifelse(runif(N)>.5, runif(N, 9,25), NA),
                 Field5 = ifelse(runif(N)>.5, runif(N, 3,30), NA) )

# > df
# id date   Field1    Field2    Field3    Field4    Field5
# 1  1 2005       NA        NA        NA        NA        NA
# 2  1 2006 22.33978        NA        NA 12.824412  6.850614
# 3  1 2007 18.62437        NA 12.334904        NA        NA
# 4  2 2005 12.06834        NA  9.683217 13.929516  8.296716
# 5  2 2006 28.08584        NA 15.420058        NA        NA
# 6  2 2007 12.30790        NA  7.811579  9.826346        NA
# 7  3 2005       NA        NA        NA 18.033117        NA
# 8  3 2006       NA  7.259732 14.889989        NA  7.320774
# 9  3 2007 11.67052 17.674071        NA        NA 27.197018


# Trying to summarize by the count of non-NAs in each row...!
df %.% regroup(list(quote(id),quote(date))) %.%
    summarize(nna_count = sum(!is.na(Field1) + !is.na(Field2) + !is.na(Field3) + !is.na(Field4) + !is.na(Field5)))

# TOTALLY WRONG?!

# Source: local data frame [9 x 3]
# Groups: id
# 
# id date nna_count
# 1  1 2005        0
# 2  1 2006        1
# 3  1 2007        1
# 4  2 2005        1
# 5  2 2006        1
# 6  2 2007        1
# 7  3 2005        0
# 8  3 2006        0
# 9  3 2007        0

By debugging with a Gray-code, I see all the !is.na()s acting weird except for Field1:

mutate(na_count = sum(16*!is.na(Field1) + 8*!is.na(Field2) + 4*!is.na(Field3) + 2*!is.na(Field4) + !is.na(Field5))) 

only ever gives 16 or 0

Upvotes: 1

Views: 774

Answers (2)

thelatemail
thelatemail

Reputation: 93908

I have a sneaking suspicion this has to do with the precedence of the ! and + operators and has little to nothing to do with dplyr itself. See this previous post: Behavior of summing is.na results

I can thus make it work using summarise by adding some extra parentheses:

df %.% 
 group_by(id,date) %.%
 summarise(new=
   (!is.na(Field1)) + (!is.na(Field2)) + (!is.na(Field3)) + 
   (!is.na(Field4)) + (!is.na(Field5)) 
 )  %.%
 arrange(id,date)


#Source: local data frame [9 x 3]
#Groups: id
#
#  id date new
#1  1 2005   0
#2  1 2006   3
#3  1 2007   2
#4  2 2005   4
#5  2 2006   2
#6  2 2007   3
#7  3 2005   1
#8  3 2006   3
#9  3 2007   3

Upvotes: 2

smci
smci

Reputation: 33960

For some bizarre reason dplyr acts weird when we pass it an expression containing multiple subexpressions each containing a reference to Field[1-5]. Only the first reference seems to work.

A workaround is to concatenate all the Field[1-5] references with c(), then do is.na() and sum() the vector. But this appears to be a dplyr bug. Can anyone confirm/deny/explain?

> df %.% regroup(list(quote(id),quote(date))) %.%
+   summarize(na_count = sum(!is.na(c(Field1,Field2,Field3,Field4,Field5))))
Source: local data frame [9 x 3]
Groups: id

  id date na_count
1  1 2005        0
2  1 2006        3
3  1 2007        2
4  2 2005        4
5  2 2006        2
6  2 2007        3
7  3 2005        1
8  3 2006        3
9  3 2007        3

Upvotes: 1

Related Questions