Reputation: 4571
How can I convert a csv into a dictionary using pandas? For example I have 2 columns, and would like column1 to be the key and column2 to be the value. My data looks like this:
"name","position"
"UCLA","73"
"SUNY","36"
cols = ['name', 'position']
df = pd.read_csv(filename, names = cols)
Upvotes: 10
Views: 42885
Reputation: 430
ankostis answer in my opinion is the most elegant solution when you have the file on disk.
However, if you do not want to or cannot go the detour of saving and loading from the file system, you can also do it like this:
df = pd.DataFrame({"name": [73, 36], "position" : ["UCLA", "SUNY"]})
series = df["position"]
series.index = df["name"]
series.to_dict()
Result:
{'UCLA': 73, 'SUNY': 36}
Upvotes: 3
Reputation: 9503
Since the 1st line of your sample csv-data is a "header",
you may read it as pd.Series
using the squeeze
keyword of pandas.read_csv()
:
>>> pd.read_csv(filename, index_col=0, header=None, squeeze=True).to_dict()
{'UCLA': 73, 'SUNY': 36}
If you want to include also the 1st line, remove the header
keyword (or set it to None
).
Upvotes: 21
Reputation: 394409
Convert the columns to a list, then zip and convert to a dict:
In [37]:
df = pd.DataFrame({'col1':['first','second','third'], 'col2':np.random.rand(3)})
print(df)
dict(zip(list(df.col1), list(df.col2)))
col1 col2
0 first 0.278247
1 second 0.459753
2 third 0.151873
[3 rows x 2 columns]
Out[37]:
{'third': 0.15187291615699894,
'first': 0.27824681093923298,
'second': 0.4597530377539677}
Upvotes: 12