Reputation: 638
I have to generate a multidimensional array N (j, k, m, l)
which is complex valued, approximately 10*100*100*1000.
I want to do the following to compute this N and return.
for j<10 ...
{
for k<100 ...
{
......
some matrix multiplication to generate a 2D complex valued matrix n(100*1000)
......
N(j,k,:,:)= n
}
}
My questions:
how to implement N(j,k,:,:)= n
efficiently.
for the present problem size, should I code from scratch or use some existing library?
Upvotes: 1
Views: 515
Reputation: 106096
You're talking about 10*100*100*1000 = 100,000,000 complex numbers, likely 8 bytes each if 2 float
s, or 16 bytes for 2 doubles
, so roughly 800 megabytes or 1.6 gigabytes. Well within the capacity of an average desktop PC, which is a good start.
The main thing for efficient assignment is to ensure the memory layout is such that the assignment is dealing with contiguous memory. You can write a couple classes to provide a nice interface - say Matrix_2D
then a Matrix_4D
like:
template <typename T>
class Matrix_4D
{
public:
Matrix_4D(size_t j, size_t k, size_t l, size_t m)
: j_(j), k_(k), l_(l), m_(m), data_(new T[j * k * l * m]),
klm_(k * l * m), lm_(l * m),
{ /* optionally, initialise elements */ }
~Matrix_4D() { delete data_; }
T& operator()(size_t j, size_t k, size_t l, size_t m)
{
return data_[j * klm_ + k * lm_ + l * m_ + m];
}
const T& operator()(size_t j, size_t k, size_t l, size_t m) const
{
return data_[j * klm_ + k * lm_ + l * m_ + m];
}
void set(size_t l, size_t m, const Matrix_2D& m2)
{
if (m2.j_ != l_ || m2.k_ != m_)
throw std::runtime_error("mismatched dimensions");
std::copy(m2.data_[0], m2.data_[lm_], (*this)(l, m, 0, 0));
}
private:
size_t j_, k_, l_, m_;
size_t klm_, lm_; // needed so often -> save
T* data_;
};
The matrix classes should be friend
s so they can rip data out of each other. If you want to get fancier, you can actually provide a proxy object - add the following to Matrix_4D
struct Proxy_2D
{
Proxy_2D(Matrix_4D& m4, size_t l, size_t m) : m4_(m4), l_(l), m_(m) { }
Proxy_2D& operator=(const Matrix2D& m2)
{
m4_.set(l_, m_, m2);
return *this;
}
Matrix_4D& m4_;
size_t l_, m_;
};
Proxy_2D operator()(size_t l, size_t m) { return Proxy_2D(*this, l, m); }
Then you can do this:
Matrix_4D m4(10, 20, 30, 40);
Matrix_2D m2(30, 40);
... set stuff in m2 ...
m4(2, 4) = m2;
EDIT: for the code in your comment - m2= m2 * transpose(m2)
- if you want to pursue this kind of do-it-yourself implementation to learn C++ rather than grab an existing efficient library using high-performance techniques like template expressions (which are way too complicated to get into here), then in Matrix_2D
:
Matrix_2D transpose() const
{
Matrix_2D result(m_, l_);
for (size_t l = 0; l < l_; ++l)
for (size_t m = 0; m < m_; ++m)
result(m, l)= (*this)(l, m);
return result;
}
Matrix_2D& operator+=(const Matrix_2D& rhs)
{
for (size_t l = 0; l < l_; ++l)
for (size_t m = 0; m < m_; ++m)
(*this)(l, m) += rhs(l, m);
return *this;
}
Matrix_2D operator+(const Matrix_2D& rhs) const
{
Matrix_2D result(*this); // copy *this
return result += rhs;
}
Interestingly, you can also have a transpose as a kind of dynamic perspective on a matrix without copying the data, but then you need to make sure the underlying matrix object's lifetime spans the use of the transposition object:
template <typename T>
class Transpose_2D
{
public:
Transpose_2D(Matrix_2D<T>& m) : m_(m) { }
T& operator()(size_t l, size_t m) { return m_(m, l); }
const T& operator()(size_t l, size_t m) const { return m_(m, l); }
private:
Matrix_2D<T>& m_;
};
Changing the Matrix_2D addition function signatures correspondingly allows this to be used, e.g.:
template <typename U>
Matrix_2D& operator+=(const U& rhs)
...
Then you can do:
m2 += Transpose_2D(m2);
And it will be reasonably efficient.
Upvotes: 2