Reputation: 3386
There is DataFrame.to_sql method, but it works only for mysql, sqlite and oracle databases. I cant pass to this method postgres connection or sqlalchemy engine.
Upvotes: 191
Views: 319411
Reputation: 6787
Faster option:
The following code will copy your Pandas DF to postgres DB much faster than df.to_sql method and you won't need any intermediate csv file to store the df.
Create an engine based on your DB specifications.
Create a table in your postgres DB that has equal number of columns as the Dataframe (df).
Data in DF will get inserted in your postgres table.
from sqlalchemy import create_engine
import psycopg2
import io
If you want to replace the table, we can replace it with normal to_sql method using headers from our df and then load the entire big time consuming df into DB.
engine = create_engine(
'postgresql+psycopg2://username:password@host:port/database')
# Drop old table and create new empty table
df.head(0).to_sql('table_name', engine, if_exists='replace',index=False)
conn = engine.raw_connection()
cur = conn.cursor()
output = io.StringIO()
df.to_csv(output, sep='\t', header=False, index=False)
output.seek(0)
contents = output.getvalue()
cur.copy_from(output, 'table_name', null="") # null values become ''
conn.commit()
cur.close()
conn.close()
Upvotes: 148
Reputation: 6787
Faster way to write a df to a table in a custom schema with/without index:
"""
Faster way to write df to table.
Slower way is to use df.to_sql()
"""
from io import StringIO
from pandas import DataFrame
from sqlalchemy.engine.base import Engine
class WriteDfToTableWithIndexMixin:
@classmethod
def write_df_to_table_with_index(
cls,
df: DataFrame,
table_name: str,
schema_name: str,
engine: Engine
):
"""
Truncate existing table and load df into table.
Keep each column as string to avoid datatype conflicts.
"""
df.head(0).to_sql(table_name, engine, if_exists='replace',
schema=schema_name, index=True, index_label='id')
conn = engine.raw_connection()
cur = conn.cursor()
output = StringIO()
df.to_csv(output, sep='\t', header=False,
index=True, index_label='id')
output.seek(0)
contents = output.getvalue()
cur.copy_expert(f"COPY {schema_name}.{table_name} FROM STDIN", output)
conn.commit()
class WriteDfToTableWithoutIndexMixin:
@classmethod
def write_df_to_table_without_index(
cls,
df: DataFrame,
table_name: str,
schema_name: str,
engine: Engine
):
"""
Truncate existing table and load df into table.
Keep each column as string to avoid datatype conflicts.
"""
df.head(0).to_sql(table_name, engine, if_exists='replace',
schema=schema_name, index=False)
conn = engine.raw_connection()
cur = conn.cursor()
output = StringIO()
df.to_csv(output, sep='\t', header=False, index=False)
output.seek(0)
contents = output.getvalue()
cur.copy_expert(f"COPY {schema_name}.{table_name} FROM STDIN", output)
conn.commit()
If you have JSON values in a column in your df then above method will still load all data correctly but the json column will have some weird format. So converting that json column to ::json
may generate error. You have to use to_sql()
. Add method=multi
to speed things up and add chunksize
to prevent your machine from freezing:
df.to_sql(table_name, engine, if_exists='replace', schema=schema_name, index=False, method='multi', chunksize=1000)
Upvotes: 2
Reputation: 126
using psycopg2 you can use native sql commands to write data into a postgres table.
import psycopg2
import pandas as pd
conn = psycopg2.connect("dbname='{db}' user='{user}' host='{host}' port='{port}' password='{passwd}'".format(
user=pg_user,
passwd=pg_pass,
host=pg_host,
port=pg_port,
db=pg_db))
cur = conn.cursor()
def insertIntoTable(df, table):
"""
Using cursor.executemany() to insert the dataframe
"""
# Create a list of tupples from the dataframe values
tuples = list(set([tuple(x) for x in df.to_numpy()]))
# Comma-separated dataframe columns
cols = ','.join(list(df.columns))
# SQL query to execute
query = "INSERT INTO %s(%s) VALUES(%%s,%%s,%%s,%%s)" % (
table, cols)
try:
cur.executemany(query, tuples)
conn.commit()
except (Exception, psycopg2.DatabaseError) as error:
print("Error: %s" % error)
conn.rollback()
return 1
Upvotes: 1
Reputation: 97
from sqlalchemy import create_engine
engine = create_engine(f'{dialect}://{user_name}@{host}:{port}/{db_name}')
Session = sessionmaker(bind=engine)
with Session() as session:
df = pd.read_csv(path + f'/{file}')
df.to_sql('table_name', con=engine, if_exists='append',index=False)
Upvotes: -1
Reputation: 139322
Starting from pandas 0.14 (released end of May 2014), postgresql is supported. The sql
module now uses sqlalchemy
to support different database flavors. You can pass a sqlalchemy engine for a postgresql database (see docs). E.g.:
from sqlalchemy import create_engine
engine = create_engine('postgresql://username:password@localhost:5432/mydatabase')
df.to_sql('table_name', engine)
You are correct that in pandas up to version 0.13.1 postgresql was not supported. If you need to use an older version of pandas, here is a patched version of pandas.io.sql
: https://gist.github.com/jorisvandenbossche/10841234.
I wrote this a time ago, so cannot fully guarantee that it always works, buth the basis should be there). If you put that file in your working directory and import it, then you should be able to do (where con
is a postgresql connection):
import sql # the patched version (file is named sql.py)
sql.write_frame(df, 'table_name', con, flavor='postgresql')
Upvotes: 245
Reputation: 555
This is how I did it.
It may be faster because it is using execute_batch
:
# df is the dataframe
if len(df) > 0:
df_columns = list(df)
# create (col1,col2,...)
columns = ",".join(df_columns)
# create VALUES('%s', '%s",...) one '%s' per column
values = "VALUES({})".format(",".join(["%s" for _ in df_columns]))
#create INSERT INTO table (columns) VALUES('%s',...)
insert_stmt = "INSERT INTO {} ({}) {}".format(table,columns,values)
cur = conn.cursor()
psycopg2.extras.execute_batch(cur, insert_stmt, df.values)
conn.commit()
cur.close()
Upvotes: 44
Reputation: 51
For Python 2.7 and Pandas 0.24.2 and using Psycopg2
Psycopg2 Connection Module
def dbConnect (db_parm, username_parm, host_parm, pw_parm):
# Parse in connection information
credentials = {'host': host_parm, 'database': db_parm, 'user': username_parm, 'password': pw_parm}
conn = psycopg2.connect(**credentials)
conn.autocommit = True # auto-commit each entry to the database
conn.cursor_factory = RealDictCursor
cur = conn.cursor()
print ("Connected Successfully to DB: " + str(db_parm) + "@" + str(host_parm))
return conn, cur
Connect to the database
conn, cur = dbConnect(databaseName, dbUser, dbHost, dbPwd)
Assuming dataframe to be present already as df
output = io.BytesIO() # For Python3 use StringIO
df.to_csv(output, sep='\t', header=True, index=False)
output.seek(0) # Required for rewinding the String object
copy_query = "COPY mem_info FROM STDOUT csv DELIMITER '\t' NULL '' ESCAPE '\\' HEADER " # Replace your table name in place of mem_info
cur.copy_expert(copy_query, output)
conn.commit()
Upvotes: -1
Reputation: 15454
Pandas 0.24.0+ solution
In Pandas 0.24.0 a new feature was introduced specifically designed for fast writes to Postgres. You can learn more about it here: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql-method
import csv
from io import StringIO
from sqlalchemy import create_engine
def psql_insert_copy(table, conn, keys, data_iter):
# gets a DBAPI connection that can provide a cursor
dbapi_conn = conn.connection
with dbapi_conn.cursor() as cur:
s_buf = StringIO()
writer = csv.writer(s_buf)
writer.writerows(data_iter)
s_buf.seek(0)
columns = ', '.join('"{}"'.format(k) for k in keys)
if table.schema:
table_name = '{}.{}'.format(table.schema, table.name)
else:
table_name = table.name
sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format(
table_name, columns)
cur.copy_expert(sql=sql, file=s_buf)
engine = create_engine('postgresql://myusername:mypassword@myhost:5432/mydatabase')
df.to_sql('table_name', engine, method=psql_insert_copy)
Upvotes: 53