Reputation: 1529
I have recently begun learning F#. Hoping to use it to perform any mathematically heavy algorithms in C# applications and to broaden my knowledge
I have so far avoided StackOverflow as I didn't want to see the answer to this until I came to one myself.
I want to be able to write very efficient F# code, focused on performance and then maybe in other ways, such as writing in F# concisely (number of lines etc.).
Project Euler Question 4:
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.
Find the largest palindrome made from the product of two 3-digit numbers.
My Answer:
let IsPalindrome (x:int) = if x.ToString().ToCharArray() = Array.rev(x.ToString().ToCharArray()) then x else 0
let euler4 = [for i in [100..999] do
for j in [i..999] do yield i*j]
|> Seq.filter(fun x -> x = IsPalindrome(x)) |> Seq.max |> printf "Largest product of two 3-digit numbers is %d"
I tried using option
and returning Some(x)
and None
in IsPalindrome
but kept getting compiling errors as I was passing in an int
and returning int option
. I got a NullRefenceException trying to return None.Value
.
Instead I return 0 if the number isn't a palindrome, these 0's go into the Sequence, unfortunately.
Maybe I could order the sequence and then get the top value? instead of using Seq.Max? Or filter out results > 1?
Would this be better? Any advice would be much appreciated, even if it's general F# advice.
Upvotes: 0
Views: 360
Reputation: 62975
Efficiency being a primary concern, using string allocation/manipulation to find a numeric palindrome seems misguided – here's my approach:
module NumericLiteralG =
let inline FromZero () = LanguagePrimitives.GenericZero
let inline FromOne () = LanguagePrimitives.GenericOne
module Euler =
let inline isNumPalindrome number =
let ten = 1G + 1G + 1G + 1G + 1G + 1G + 1G + 1G + 1G + 1G
let hundred = ten * ten
let rec findHighDiv div =
let div' = div * ten
if number / div' = 0G then div else findHighDiv div'
let rec impl n div =
div = 0G || n / div = n % ten && impl (n % div / ten) (div / hundred)
findHighDiv 1G |> impl number
let problem004 () =
{ 100 .. 999 }
|> Seq.collect (fun n -> Seq.init (1000 - n) ((+) n >> (*) n))
|> Seq.filter isNumPalindrome
|> Seq.max
Upvotes: 4
Reputation: 81
Optimized version:
let Euler dgt=
let [mine;maxe]=[dgt-1;dgt]|>List.map (fun x->String.replicate x "9"|>int)
let IsPalindrom (str:string)=
let rec fn(a,b)=a>b||str.[a]=str.[b]&&fn(a+1,b-1)
fn(0,str.Length-1)
let IsIntPalindrome = (string>>IsPalindrom)
let rec fn=function
|x,y,max,a,_ when a=mine->x,y,max
|x,y,max,a,b when b=mine->fn(x,y,max,a-1,maxe)
|x,y,max,a,b->a*b|>function
|m when b=maxe&&m<max->x,y,max
|m when m>max&&IsIntPalindrome(m)->fn(a,b,m,a-1,maxe)
|m when m>max->fn(x,y,max,a,b-1)
|_->fn(x,y,max,a-1,maxe)
fn(0,0,0,maxe,maxe)
Log (switch #time on):
> Euler 2;;
Real: 00:00:00.004, CPU: 00:00:00.015, GC gen0: 0, gen1: 0, gen2: 0
val it : int * int * int = (99, 91, 9009)
> Euler 3;;
Real: 00:00:00.004, CPU: 00:00:00.015, GC gen0: 0, gen1: 0, gen2: 0
val it : int * int * int = (993, 913, 906609)
> Euler 4;;
Real: 00:00:00.002, CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0
val it : int * int * int = (9999, 9901, 99000099)
> Euler 5;;
Real: 00:00:00.702, CPU: 00:00:00.686, GC gen0: 108, gen1: 1, gen2: 0
val it : int * int * int = (99793, 99041, 1293663921) //int32 overflow
Extern to BigInteger:
let Euler dgt=
let [mine;maxe]=[dgt-1;dgt]|>List.map (fun x->new System.Numerics.BigInteger(String.replicate x "9"|>int))
let IsPalindrom (str:string)=
let rec fn(a,b)=a>b||str.[a]=str.[b]&&fn(a+1,b-1)
fn(0,str.Length-1)
let IsIntPalindrome = (string>>IsPalindrom)
let rec fn=function
|x,y,max,a,_ when a=mine->x,y,max
|x,y,max,a,b when b=mine->fn(x,y,max,a-1I,maxe)
|x,y,max,a,b->a*b|>function
|m when b=maxe&&m<max->x,y,max
|m when m>max&&IsIntPalindrome(m)->fn(a,b,m,a-1I,maxe)
|m when m>max->fn(x,y,max,a,b-1I)
|_->fn(x,y,max,a-1I,maxe)
fn(0I,0I,0I,maxe,maxe)
Check:
Euler 5;;
Real: 00:00:02.658, CPU: 00:00:02.605, GC gen0: 592, gen1: 1, gen2: 0
val it :
System.Numerics.BigInteger * System.Numerics.BigInteger *
System.Numerics.BigInteger =
(99979 {...}, 99681 {...}, 9966006699 {...})
Upvotes: 0
Reputation: 81
let IsPalindrom (str:string)=
let rec fn(a,b)=a>b||str.[a]=str.[b]&&fn(a+1,b-1)
fn(0,str.Length-1)
let IsIntPalindrome = (string>>IsPalindrom)
let sq={100..999}
sq|>Seq.map (fun x->sq|>Seq.map (fun y->(x,y),x*y))
|>Seq.concat|>Seq.filter (snd>>IsIntPalindrome)|>Seq.maxBy (snd)
Upvotes: 1
Reputation: 10457
Haskell (my best try in functional programming)
merge f x [] = x
merge f [] y = y
merge f (x:xs) (y:ys)
| f x y = x : merge f xs (y:ys)
| otherwise = y : merge f (x:xs) ys
compare_tuples (a,b) (c,d) = a*b >= c*d
gen_mul n = (n,n) : merge compare_tuples
( gen_mul (n-1) )
( map (\x -> (n,x)) [n-1,n-2 .. 1] )
is_product_palindrome (a,b) = x == reverse x where x = show (a*b)
main = print $ take 10 $ map ( \(a,b)->(a,b,a*b) )
$ filter is_product_palindrome $ gen_mul 9999
output (less than 1s)- first 10 palindromes =>
[(9999,9901,99000099),
(9967,9867,98344389),
(9999,9811,98100189),
(9999,9721,97200279),
(9999,9631,96300369),
(9999,9541,95400459),
(9999,9451,94500549),
(9767,9647,94222249),
(9867,9547,94200249),
(9999,9361,93600639)]
One can see that this sequence is lazy generated from large to small
Upvotes: 0
Reputation: 47904
Here's one way to do it:
/// handy extension for reversing a string
type System.String with
member s.Reverse() = String(Array.rev (s.ToCharArray()))
let isPalindrome x = let s = string x in s = s.Reverse()
seq {
for i in 100..999 do
for j in i..999 -> i * j
}
|> Seq.filter isPalindrome
|> Seq.max
|> printfn "The answer is: %d"
Upvotes: 3
Reputation: 8637
just my solution:
let isPalin x =
x.ToString() = new string(Array.rev (x.ToString().ToCharArray()))
let isGood num seq1 = Seq.exists (fun elem -> (num % elem = 0 && (num / elem) < 999)) seq1
{998001 .. -1 .. 10000} |> Seq.filter(fun x -> isPalin x) |> Seq.filter(fun x -> isGood x {999 .. -1 .. 100}) |> Seq.nth 0
Upvotes: 0