Reputation: 51
I need to implement a Trie (in Java) for a college project. The Trie should be able to add and remove Strings (for phase 1).
I have spent several hours each day (for the last few days) trying to figure out how to do this and FAILED miserably each time.
I require some help, the examples on the internet and my textbook (Data Structures and Algorithms in Java By Adam Drozdek) are not helping.
Node classes I am working with:
class Node {
public boolean isLeaf;
}
class internalNode extends Node {
public String letters; //letter[0] = '$' always.
//See image -> if letter[1] = 'A' then children[1] refers to child node "AMMO"
//See image -> if letter[2] = 'B' then children[2] refers to internal node "#EU"
public TrieNode[] children = new TrieNode[2];
public TrieInternalNode(char ch)
{
letters = "#" + String.valueOf(ch);//letter[0] = '$' always.
isLeaf = false;
}
}
class leafNode extends Node
{
public String word;
public TrieLeafNode(String word)
{
this.word = new String(word);
isLeaf = true;
}
}
And here is the pseudo code for insert that I need to follow: (warning it is very vague)
trieInsert(String K)
{
i = 0;
p = the root;
while (not inserted)
{
if the end of word k is reached
set the end-of-word marker in p to true;
else if (p.ptrs[K[i]] == 0)
create a leaf containing K and put its address in p.ptrs[K[i]];
else if reference p.ptrs[K[i]] refers to a leaf
{
K_L = key in leaf p.ptrs[K[i]]
do
{
create a nonleaf and put its address in p.ptrs[K[i]];
p = the new nonleaf;
} while (K[i] == K_L[i++]);
}
create a leaf containing K and put its address in p.ptrs[K[--i]];
if the end of word k is reached
set the end-of-word marker in p to true;
else
create a leaf containing K_L and put its address in p.ptrs[K_L[i]];
else
p = p.ptrs[K[i++]];
}
}
I need to implement the following methods.
public boolean add(String word){...}//adds word to trie structure should return true if successful and false otherwise
public boolean remove(String word){...}//removes word from trie structure should return true if successful and false otherwise
I cant find pseudo code for remove, but if insert does not work delete wont help me.
Here is a image of how the Trie that I need to implement should look like.
I am aware that the Trie will still be inefficient if implemented like this, but at the moment I need not worry about this.
The book provides an implementation that is similar to what I need to do but doesn't use the end of word char ('$') and only stores the words without their prefixes in the child nodes http://mathcs.duq.edu/drozdek/DSinJava/SpellCheck.java
$
(dollar) symbol to indicate a end-of-word. (see the image below )$
symbol will be inserted.I do not expect anyone to do the implementation for me(unless they have one lying around :P) I just really need help.
Upvotes: 5
Views: 1794
Reputation: 2393
First of all, I don't think you should make leaf nodes and internal nodes separate classes. I recommend making a universal node class with an isLeaf() method. This method would return true if a node has no children.
Here is some higher-level pseudocode for the functions you need to implement. For simplicity, I assume the existence of a method called getIndex() which returns the index corresponding to a character.
Insert(String str)
Node current = null
for each character in str
int index = getIndex(character)
if current.children[index] has not been initialized
initialize current.children[index] to be a new Node
current = current.children[index]
You can easily augment this pseudocode to fit your needs. For example, if you want to return false whenever insertion isn't successful:
Now, here is some higher-level pseudocode for remove.
Remove(String str)
Node current = null
for each character in str
int index = getIndex(character)
current = current.children[index]
// At this point, we found the node we want to remove. However, we want to
// delete as many ancestor nodes as possible. We can delete an ancestor node
// if it is not need it any more. That is, we can delete an ancestor node
// if it has exactly one child.
Node ancestor = current
while ancestor is not null
if ancestor has 2 or more children
break out of loop
else if ancestor has less than 2 children
Node grandAncestor = ancestor.parent
if grandAncestor is not null
reinitialize grandAncestor.children // this has the effect of removing ancestor
ancestor = ancestor.parent
At a very high level, we follow the input string to the node we want to remove. After this, we traverse up the tree following parent pointers and delete every node with 1 child (since it is no longer needed). Once we reach a node with 2 children, we stop.
Like Insert, we can easily augment this pseudocode to return false whenever deletion isn't successful:
It is easiest to implement delete if your Node class has a parent field. However, it is possible to implement the method without parent points, but it is more difficult. You can see an example of the trickier implementation here.
Upvotes: 2