Reputation: 1420
I was writing a code the other day and I found it rather strange, that int** and int[][] does not behave the same way. Can anyone point out the differences between them? Below is my sample code, which fails with a segmentation fault, if I pass constant size 2d array, while it does work fine when I pass a dinamically allocated 2d array.
I am confused mainly because ant int[] array works the same as int*.
#include<stdio.h>
#include<stdlib.h>
void sort_by_first_row(int **t, int n, int m)
{
int i, j;
for(i = m-1 ; i > 0 ; --i)
{
for(j = 0 ; j < i; ++j)
{
if(t[0][j] < t[0][j+1])
{
int k;
for(k = 0 ; k < n ;++k)
{
int swap;
swap = t[k][j];
t[k][j] = t[k][j+1];
t[k][j+1] = swap;
}
}
}
}
}
int main(void) {
int i, j;
/* Working version */
/*int **t;
t =(int**) malloc(3*sizeof(int*));
for(i = 0; i < 3; ++i)
{
t[i] = (int*) malloc(6*sizeof(int));
}*/
/*WRONG*/
int t[3][6];
t[0][0] = 121;
t[0][1] = 85;
t[0][2] = 54;
t[0][3] = 89;
t[0][4] = 879;
t[0][5] = 11;
for( i = 0; i < 6; ++i )
t[1][i] = i+1;
t[2][0] = 2;
t[2][1] = 4;
t[2][2] = 5;
t[2][3] = 3;
t[2][4] = 1;
t[2][5] = 6;
sort_by_first_row(t, 3, 6);
for(i = 0; i < 3; ++i)
{
for(j = 0; j < 6; ++j)
printf("%d ", t[i][j]);
printf("\n");
}
return 0;
}
So based on the below answers I realize, that a multidimensional array is stored continuously in a row major order. After some modification, the below code works:
#include<stdio.h>
#include<stdlib.h>
void sort_by_first_row(int *t, int n, int m)
{
int i, j;
for(i = m-1 ; i > 0 ; --i)
{
for(j = 0 ; j < i; ++j)
{
if(t[j] < t[j+1])
{
int k;
for(k = 0 ; k < n ;++k)
{
int swap;
swap = t[k*m + j];
t[k*m + j] = t[k*m + j+1];
t[k*m + j+1] = swap;
}
}
}
}
}
int main(void) {
int i, j;
/* Working version */
/*int **t;
t =(int**) malloc(3*sizeof(int*));
for(i = 0; i < 3; ++i)
{
t[i] = (int*) malloc(6*sizeof(int));
}*/
/*WRONG*/
int t[3][6];
t[0][0] = 121;
t[0][1] = 85;
t[0][2] = 54;
t[0][3] = 89;
t[0][4] = 879;
t[0][5] = 11;
for( i = 0; i < 6; ++i )
t[1][i] = i+1;
t[2][0] = 2;
t[2][1] = 4;
t[2][2] = 5;
t[2][3] = 3;
t[2][4] = 1;
t[2][5] = 6;
sort_by_first_row(t, 3, 6);
for(i = 0; i < 3; ++i)
{
for(j = 0; j < 6; ++j)
printf("%d ", t[i][j]);
printf("\n");
}
return 0;
}
My new question is this: How to modify the code, so that the procedure works with int[][] and int** also?
Upvotes: 0
Views: 1962
Reputation: 2495
int** is quite different from int[][]. int** is simply a pointer to a pointer and would appear like the following:
in reality, you can access the entire multidimensional array with simply int* pointing to the first element, and doing simple math from that.
Here is the result of the separate allocations (in your commented code):
However when you allocate a multidimensional array, all of the memory is contiguous, and therefore easy to do simple math to reach the desired element.
int t[3][6];
int *t = (int*) malloc((3 * 6) * sizeof(int)); // <-- similarly
This will result in a contiguous chunk of memory for all elements.
You certainly can use the separate allocations, however you will need to walk the memory differently.
Hope this helps.
Upvotes: 3
Reputation: 6217
int t[3][6]
is very nearly the same thing as int t[18]
. A single contiguous block of 18 integers is allocated in both cases. The variable t
provides the address of the start of this block of integers, just like the one-dimensional case.
Contrast this with the case you have marked as "working", where t
gives you the address of a block of 3 pointers, each of which points to a block of memory with 6 integers. It's a totally different animal.
The difference between t[3][6]
and t[18]
is that the compiler remembers the size of each dimension of the array, and automatically converts 2D indices into 1D offsets. For example, the compiler automatically converts t[1][2]
into *(t + 1*6 + 2)
(equivalent to t[8]
if it were declared as a one-dimensional array).
When you pass a multi-dimensional array to a function, there are two ways to handle it. The first is to declare the function argument as an array with known dimension sizes. The second is to treat your array like a 1D array.
If you are going to declare the size of your array, you would declare your function like this:
void sort_by_first_row(int t[][6], int n)
or this
void sort_by_first_row(int t[3][6])
You either have to declare all array dimension sizes, or you can leave out the first size. In both cases, you access elements of t
using t[i][j]
; you've given the compiler enough information to do the offset math that converts from 2D notation to a 1D index offset.
If you treat it as a 1D array, you have to pass the array dimensions and then do the offset math yourself.
Here's a full working example, where f
and f2
both generate the same output:
void f(int* t, int m, int n)
{
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
std::cout << t[i * n + j] << " ";
std::cout << std::endl;
}
void f2(int t[][6], int m)
{
for (int i = 0; i < m; i++)
for (int j = 0; j < 6; j++)
std::cout << t[i][j] << " ";
std::cout << std::endl;
}
int main()
{
int t[3][6];
int val = 1;
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 6; j++)
{
t[i][j] = val;
val++;
}
}
f(&(t[0][0]), 3, 6);
f2(t, 3);
return 0;
}
One thing to note is the hack-ish way I had to pass t
to f
. It's been a while since I wrote in C/C++, but I remember being able to pass t
directly. Maybe somebody can fill me in on why my current compiler won't let me.
Upvotes: 1
Reputation:
A int **
is a pointer to a pointer to an int
, and can be a pointer to an array of pointers to arrays of int
s. A int [][]
is a 2-dimensional array of int
s. A two-dimensional array is exactly the same as a one-dimensional array in C in one respect: It is fundamentally a pointer to the first object. The only difference is the accessing, a two-dimensional array is accessed with two different strides simultaneously.
Long story short, a int[][]
is closer to an int*
than an int**
.
Upvotes: 1
Reputation: 70392
Realize that int **t
makes t
a pointer to a pointer, while int t[3][6]
makes t
an array of an array. In most cases, when an array is used in an expression, it will become the value of the address of its first member. So, for int t[3][6]
, when t
is passed to a function, the function will actually be getting the value of &t[0]
, which has type pointer to an array (in this case, int (*)[6]
).
The type of what is being pointed at is important for how the pointer behaves when indexed. When a pointer to an object is incremented by 5, it points to the 5th object following the current object. Thus, for int **t
, t + 5
will point to the 5th pointer, while for int (*t)[M]
, t + 5 will point to the 5th array. That is, the result of t + 5
is the same as the result of &t[5]
.
In your case, you have implemented void sort_by_first_row(int **t, int n, int m)
, but you are passing it an incompatible pointer. That is, the type of &t[0]
(which is what t
will become in main
) is not the same as what the function wants, a int **t
. Thus, when the sorting function starts to use that address, it will think its indexing into pointers, when the underlying structure is an array of arrays.
Upvotes: 3