Reputation: 35776
I'm trying to merge two DataFrames
summing columns value.
>>> print(df1)
id name weight
0 1 A 0
1 2 B 10
2 3 C 10
>>> print(df2)
id name weight
0 2 B 15
1 3 C 10
I need to sum weight
values during merging for similar values in the common column.
merge = pd.merge(df1, df2, how='inner')
So the output will be something like following.
id name weight
1 2 B 25
2 3 C 20
Upvotes: 52
Views: 58024
Reputation: 1573
This solution works also if you want to sum more than one column. Assume data frames
>>> df1
id name weight height
0 1 A 0 5
1 2 B 10 10
2 3 C 10 15
>>> df2
id name weight height
0 2 B 25 20
1 3 C 20 30
You can concatenate them and group by index columns.
>>> pd.concat([df1, df2]).groupby(['id', 'name']).sum().reset_index()
id name weight height
0 1 A 0 5
1 2 B 35 30
2 3 C 30 45
Upvotes: 56
Reputation: 139342
If you set the common columns as the index, you can just sum the two dataframes, much simpler than merging:
In [30]: df1 = df1.set_index(['id', 'name'])
In [31]: df2 = df2.set_index(['id', 'name'])
In [32]: df1 + df2
Out[32]:
weight
id name
1 A NaN
2 B 25
3 C 20
Upvotes: 25
Reputation: 93984
In [41]: pd.merge(df1, df2, on=['id', 'name']).set_index(['id', 'name']).sum(axis=1)
Out[41]:
id name
2 B 25
3 C 20
dtype: int64
Upvotes: 27