Reputation: 63
This is what i have
import numpy as np
import scipy.special as sp
ni = input("Digite o valor N Inicial: ") #Ask for a initial N
ne = input ("Digite o valor N Final: ") #Ask for Final N
vet= np.arange(ni,ne+1) #Arrange A Vector with the Ns given
x = np.linspace (-1, 1, 100)
def polinomios (vet, x):
vetr = [0]*(ne-ni+1)
for j in range (ne-ni+1):
for p in range (ne-ni+1):
vetr[p] = sp.legendre(vet[j])(x)
return (vetr)
P = polinomios (vet, x)
print P
And i get like this
[array([ 1. , -0.24609375, 1. ]), array([ 1. , -0.24609375, 1. ]), array([ 1. , -0.24609375, 1. ]), array([ 1. , -0.24609375, 1. ]), array([ 1. , -0.24609375, 1. ]), array([ 1. , -0.24609375, 1. ]), array([ 1. , -0.24609375, 1. ]), array([ 1. , -0.24609375, 1. ]), array([ 1. , -0.24609375, 1. ])]
And I cant find a way to get it looks like this, but without putting the smaller number on the first collunn:
[[-0.24609375 1. 1. ]
[-0.24609375 1. 1. ]
[-0.24609375 1. 1. ]
[-0.24609375 1. 1. ]
[-0.24609375 1. 1. ]
[-0.24609375 1. 1. ]
[-0.24609375 1. 1. ]
[-0.24609375 1. 1. ]
[-0.24609375 1. 1. ]]
Upvotes: 1
Views: 2513
Reputation: 63
Ok, I did like @askewchan said and used np.array(P) and it worked.
[[ 1. -0.5 1. ]
[-1. 0. 1. ]
[ 1. 0.375 1. ]
[-1. 0. 1. ]
[ 1. -0.3125 1. ]
[-1. 0. 1. ]
[ 1. 0.2734375 1. ]
[-1. 0. 1. ]
[ 1. -0.24609375 1. ]]
Upvotes: 1