Reputation: 45672
Lately I've been doing a lot of processing on 8x8 blocks of image-data. Standard approach has been to use nested for-loops to extract the blocks, e.g.
for y in xrange(0,height,8):
for x in xrange(0,width,8):
d = image_data[y:y+8,x:x+8]
# further processing on the 8x8-block
I can't help to wonder if there is a way to vectorize this operation or another approach using numpy/scipy that I can use instead? An iterator of some kind?
A MWE1:
#!/usr/bin/env python
import sys
import numpy as np
from scipy.fftpack import dct, idct
import scipy.misc
import matplotlib.pyplot as plt
def dctdemo(coeffs=1):
unzig = np.array([
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63])
lena = scipy.misc.lena()
width, height = lena.shape
# reconstructed
rec = np.zeros(lena.shape, dtype=np.int64)
# Can this part be vectorized?
for y in xrange(0,height,8):
for x in xrange(0,width,8):
d = lena[y:y+8,x:x+8].astype(np.float)
D = dct(dct(d.T, norm='ortho').T, norm='ortho').reshape(64)
Q = np.zeros(64, dtype=np.float)
Q[unzig[:coeffs]] = D[unzig[:coeffs]]
Q = Q.reshape([8,8])
q = np.round(idct(idct(Q.T, norm='ortho').T, norm='ortho'))
rec[y:y+8,x:x+8] = q.astype(np.int64)
plt.imshow(rec, cmap='gray')
plt.show()
if __name__ == '__main__':
try:
c = int(sys.argv[1])
except ValueError:
sys.exit()
else:
if 1 <= int(sys.argv[1]) <= 64:
dctdemo(int(sys.argv[1]))
Footnotes:
Upvotes: 3
Views: 1894
Reputation: 14377
There is a function called extract_patches
in the scikit-learn feature extraction routines. You need to specify a patch_size
and an extraction_step
. The result will be a view on your image as patches, which may overlap. The resulting array is 4D, the first 2 index the patch, and the last two index the pixels of the patch. Try this
from sklearn.feature_extraction.image import extract_patches
patches = extract_patches(image_data, patch_size=(8, 8), extraction_step=(4, 4))
This gives (8, 8) size patches that overlap by half.
Note that up until now this uses no extra memory, because it is implemented using stride tricks. You can force a copy by reshaping
patches = patches.reshape(-1, 8, 8)
which will basically yield a list of patches.
Upvotes: 3
Reputation: 32521
There's a function view_as_windows
for this in Scikit Image
Unfortunately I will have to finish this answer another time, but you can grab the windows in a form that you can pass to dct
with:
from skimage.util import view_as_windows
# your code...
d = view_as_windows(lena.astype(np.float), (8, 8)).reshape(-1, 8, 8)
dct(d, axis=0)
Upvotes: 5